56 resultados para Quelato de Fe(III)-redutase

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic carbon-rich shales from localities in England, Italy, and Morocco, which formed during the Cenomanian-Turonian oceanic anoxic event (OAE), have been examined for their total organic carbon (TOC) values together with their carbon, nitrogen, and iron isotope ratios. Carbon isotope stratigraphy (d13Corg and d13Ccarb) allows accurate recognition of the strata that record the oceanic anoxic event, in some cases allowing characterization of isotopic species before, during, and after the OAE. Within the black shales formed during the OAE, relatively heavy nitrogen isotope ratios, which correlate positively with TOC, suggest nitrate reduction (leading ultimately to denitrification and/or anaerobic ammonium oxidation). Black shales deposited before the onset of the OAE in Italy have unusually low bulk d57Fe values, unlike those found in the black shale (Livello Bonarelli) deposited during the oceanic anoxic event itself: These latter conform to the Phanerozoic norm for organic-rich sediments. Pyrite formation in the pre-OAE black shales has apparently taken place via dissimilatory iron reduction (DIR), within the sediment, a suboxic process that causes an approximately -2 per mil fractionation between a lithogenic Fe(III)oxide source and Fe(II)aq. In contrast, bacterial sulfate reduction (BSR), at least partly in the water column, characterized the OAE itself and was accompanied by only minor iron isotope fractionation. This change in the manner of pyrite formation is reflected in a decrease in the average pyrite framboid diameter from ~10 to ~7 µm. The gradual, albeit irregular increase in Fe isotope values during the OAE, as recorded in the Italian section, is taken to demonstrate limited isotopic evolution of the dissolved iron pool, consequent upon ongoing water column precipitation of pyrite under euxinic conditions. Given that evidence exists for both nitrate and sulfate reduction during the OAE, it is evident that redox conditions in the water column were highly variable, in both time and space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms are a primary control on the redox-induced cycling of iron in the environment. Despite the ability of bacteria to grow using both Fe(II) and Fe(III) bound in solid-phase iron minerals, it is currently unknown if changing environmental conditions enable the sharing of electrons in mixed-valent iron oxides between bacteria with different metabolisms. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizing bacterium Rhodopseudomonas palustris TIE-1 oxidizes magnetite (Fe3O4) nanoparticles using light energy. This process is reversible in co-cultures by the anaerobic Fe(III)-reducing bacterium Geobacter sulfurreducens. These results demonstrate that Fe ions bound in the highly crystalline mineral magnetite are bioavailable as electron sinks and electron sources under varying environmental conditions, effectively rendering a naturally occurring battery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate benthic phosphorus cycling in recent continental margin sediments at three sites off the Namibian coastal upwelling area. Examination of the sediments reveals that organic and biogenic phosphorus are the major P-containing phases preserved. High Corg/Porg ratios just at the sediment surface suggest that the preferential regeneration of phosphorus relative to that of organic carbon has either already occurred on the suspension load or that the organic matter deposited at these sites is already rather refractory. Release of phosphate in the course of benthic microbial organic matter degradation cannot be identified as the dominating process within the observed internal benthic phosphorus cycle. Dissolved phosphate and iron in the pore water are closely coupled, showing high concentrations below the oxygenated surface layer of the sediments and low concentrations at the sediment-water interface. The abundant presence of Fe(III)-bound phosphorus in the sediments document the co-precipitation of both constituents as P-containing iron (oxyhydr)oxides. However, highly dissolved phosphate concentrations in pore waters cannot be explained, neither by simple mass balance calculations nor by the application of an established computer model. Under the assumption of steady state conditions, phosphate release rates are too high as to be balanced with a solid phase reservoir. This discrepancy points to an apparent lack of solid phase phosphorus at sediment depth were suboxic conditions prevail. We assume that the known, active, fast and episodic particle mixing by burrowing macrobenthic organisms could repeatedly provide the microbially catalyzed processes of iron reduction with authigenic iron (oxyhydro)oxides from the oxic surface sediments. Accordingly, a multiple internal cycling of phosphate and iron would result before both elements are buried below the iron reduction zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore water and solid phase from surface sediments of the continental slope off Uruguay and from the Argentine Basin (southwestern Atlantic) were investigated geochemically to ascribe characteristic early diagenetic reactions of iron and manganese. Solid-phase iron speciation was determined by extractions as well as by Mössbauer spectroscopy. Both methods showed good agreement (<6% deviation) for total-Fe speciation. The proportion of easy reducible iron oxyhydroxide relative to total-Fe oxides decreased from the continental slope to the deep sea which is attributed to an increase in crystallinity during transport as well as to a general decrease of iron mobilization. The product of iron reoxidation is Fe oxyhydroxide which made up less than 5% of total Fe. In addition to this fraction, a proportion of smectite bound iron was found to be redox reactive. This fraction made up to 10% of total Fe in sediments of the Argentine Basin and was quantitatively extracted by 1 N HCl. The redox reactive Fe(+II) fraction of smectite was almost completely reoxidized within 24 h under air atmosphere and may therefore considerably contribute to iron redox cycling if bioturbation occurs. In the case of the slope sediments we found concurrent iron and manganese release to pore water. It is not clear whether this is caused by dissimilatory iron and manganese reduction at the same depth or dissimilatory iron reduction alone inducing Mn(+IV) reduction by (abiotic) reaction with released Fe2+. The Argentine Basin sediment showed a significant manganese solid-phase enrichment above the denitrification depth despite the absence of a distinct pore-water gradient of Mn. This implies a recent termination of manganese mobilization and thus a non-steady-state situation with respect to sedimentation or to organic carbon burial rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nano-scale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled-up successfully from lab-scale to pilot plant-scale production, whilst maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 L bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 hours. This procedure was capable of producing up to 120 g biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 L, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kg to tonne quantities.