186 resultados para Qualitative analysis of enzymes from different regions of the digestive tract

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early Eocene epoch was characterized by extreme global warmth, which in terrestrial settings was characterized by an expansion of near-tropical vegetation belts into the high latitudes. During the middle to late Eocene, global cooling caused the retreat of tropical vegetation to lower latitudes. In high-latitude settings, near-tropical vegetation was replaced by temperate floras. This floral change has recently been traced as far south as Antarctica, where along the Wilkes Land margin paratropical forests thrived during the early Eocene and temperate Nothofagus forests developed during the middle Eocene. Here we provide both qualitative and quantitative palynological data for this floral turnover based on a sporomorph record recovered at Integrated Ocean Drilling Program (IODP) Site U1356 off the Wilkes Land margin. Following the nearest living relative concept and based on a comparison with modern vegetation types, we examine the structure and diversity patterns of the Eocene vegetation along the Wilkes Land margin. Our results indicate that the early Eocene forests along the Wilkes Land margin were characterized by a diverse canopy composed of plants that today occur in tropical settings; their richness pattern was similar to that of present-day forests from New Caledonia. The middle Eocene forests were characterized by a canopy dominated by Nothofagus and exhibited richness patterns similar to modern Nothofagus forests from New Zealand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the Indian Ocean Expedition of the German research vessel "Meteor" and the following cruise with the Pakistani fishing vessel "Machhera" in February and March 1965, sediments were sampled from the shelf, continental slope and the Arabian Basin off Pakistan and India. The biostratigraphic studies are based on sedimentary material from 24 sediment cores up to 480 cm long and 100 grab samples. The faunal residues of the > 160 µ fraction (chiefly foraminifera and pteropods) were determined and counted in order to get an idea of the climatic conditions during the Late Quaternary of this region. Biostratigraphic correlations of these Late Quaternary deposits are only possible if the thanatocoenosis of the surface sediments are well known. The analysis of the benthonic foraminiferal populations resulted in the definition of several foraminiferal facies. The following sequence of forarniniferal facies, named after their most characteristic members, can be distinguished from the shelf to the deep-sea: 1. Ammonia-Florilus facies ; 2. Ammonia-Cancris facies; 3. Cassidulina-Cibicides facies; 4. Uvigerina-Cassidulina facies ; 5. Buliminacea facies ; 6. deepwater facies, partly with Bulimina aculeata or with Nonionidae. On the upper continental slope there is a zone extremely poor in benthonic foraminifera. In this water depth the oxygen minimum layer (0.05-0.02 ml/l) of the water column reaches the slope. Almost no connection can be observed between the living and the dead foraminiferal population of the same sample. The regional distribution of the planktonic foraminifera from plankton tows as well as from the surface sediments shows marked differences in the species composition of faunas from different regions within the area of investigation. That depends on oceanographic conditions such as upwelling, dissolution of carbonate at great depths etc. Based on the results of faunal analysis of samples from the recent sea-floor, a biostratigraphic subdivision of the sediments in the cores was established. The following biostratigraphically defined sections could be distinguished from the top of the sediment cores downwards : 1. Relatively cool climatic conditions are reflected by the foraminifera of the uppermost core sections. 2. The next section is characterized by much warmer conditions (Holocene climatic optimum). The C-14 ages of this interval range from 4000 to 10 000 years B.P. according to different authors. C-14 dates on the material investigated do not give reliable clues. 3. Foraminiferal populations adapted to much colder conditions can be observed in the underlying core section. The boundary between the warm climate reflected by the foraminifera of section 2 and the cold climate (section 3) is relatively sharp. It can be correlated from core to core over the whole area investigated. The cold climate sediments of section 3 are underlain by different cool-, warm- and cold-climate sediments which can only be correlated over very short distances. Since it appears certain that the last really cold conditions ended earlier in the Arabian Sea and its vicinity than in Europe it is recommended not to use the European stratigraphic terms for the Quaternary. Because of the lack of reliable absolute sediment ages for the cores no exact sedimentation rates can be given. According to rough estimates, however, the rates are 1-2 cm/1000 years in the deep basin and up to 40 cm/1000 years on the upper continental slope. Sedimentation rates are always larger near the mouth of the Indus-River than off South India at stations of about the same water depth. Planktonic gastropods (mainly pteropods) cannot be used for biostratigraphic purposes in the region under consideration. All of them seem to be displaced from the shelf. Their distribution there is given in.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisms that are distributed across spatial climate gradients often exhibit adaptive local variations in morphological and physiological traits, but to what extent such gradients shape evolutionary responses is still unclear. Given the strong natural contrast in latitudinal temperature gradients between the North-American Pacific and Atlantic coast, we asked how increases in vertebral number (VN, known as Jordan's Rule) with latitude would differ between Pacific (Atherinops affinis) and Atlantic Silversides (Menidia menidia), two ecologically equivalent and taxonomically similar fishes with similar latitudinal distributions. VN was determined from radiographs of wild-caught adults (genetic + environmental differences) and its genetic basis confirmed by rearing offspring in common garden experiments. Compared to published data on VN variation in M. menidia (a mean increase of 7.0 vertebrae from 32 to 46°N, VN slope = 0.42/lat), the latitudinal VN increase in Pacific Silversides was approximately half as strong (a mean increase of 3.3 vertebrae from 28 to 43°N, VN slope = 0.23/lat). This mimicked the strong Atlantic (1.11°C/lat) versus weak Pacific latitudinal gradient (0.40°C/lat) in median annual sea surface temperature (SST). Importantly, the relationship of VN to SST was not significantly different between the two species (average slope = -0.39 vertebrae/°C), thus suggesting a common thermal dependency of VN in silverside fishes. Our findings provide novel support for the hypothesis that temperature gradients are the ultimate cause of Jordan's Rule, even though its exact adaptive significance remains speculative. A second investigated trait, the mode of sex determination in Atlantic versus Pacific Silversides, revealed patterns that were inconsistent with our expectation: M. menidia displays temperature-dependent sex determination (TSD) at low latitudes, where growing seasons are long or unconstrained, but also a gradual shift to genetic sex determination (GSD) with increasing latitude due to more and more curtailed growing seasons. Sex ratios in A. affinis, on the other hand, were independent of latitude and rearing temperature (indicating GSD), even though growing seasons are thermally unconstrained across most of the geographical distribution of A. affinis. This suggests that additional factors (e.g., longevity) play an important role in shaping the mode of sex determination in silverside fishes.