35 resultados para Pointing deviation
em Publishing Network for Geoscientific
Resumo:
Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30 X 8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatiotemporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grainsize fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early tomid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.
Resumo:
The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.
Resumo:
A 6200 year old peat sequence, cored in a volcanic crater on the sub-Antarctic Ile de la Possession (Iles Crozet), has been investigated, based on a multi-proxy approach. The methods applied are macrobotanical (mosses, seeds and fruits) and diatom analyses, complemented by geochemical (Rock-Eval6) and rock magnetic measurements. The chronology of the core is based on 5 radiocarbon dates. When combining all the proxy data the following changes could be inferred. From the onset of the peat formation (6200 cal yr BP) until ca. 5550 cal yr BP, biological production was high and climatic conditions must have been relatively warm. At ca. 5550 cal yr BP a shift to low biological production occurred, lasting until ca. 4600 cal yr BP. During this period the organic matter is well preserved, pointing to a cold and/or wet environment. At ca. 4600 cal yr BP, biological production increased again. From ca. 4600 cal yr BP until ca. 4100 cal yr BP a 'hollow and hummock' micro topography developed at the peat surface, resulting in the presence of a mixture of wetter and drier species in the macrobotanical record. After ca. 4100 cal yr BP, the wet species disappear and a generally drier, acidic bog came into existence. A major shift in all the proxy data is observed at ca. 2800 cal yr BP, pointing to wetter and especially windier climatic conditions on the island probably caused by an intensification and/or latitudinal shift of the southern westerly belt. Caused by a stronger wind regime, erosion of the peat surface occurred at that time and a lake was formed in the peat deposits of the crater, which is still present today.
Resumo:
Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n?7), 16:4(n?3) and 20:5(n?3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n?3), 16:0, 18:2(n?6) and 18:1(n?9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n?9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n?9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (>50 m) as compared to surface (0-50 m) dwelling individuals related to a descent prior to overwintering.
Resumo:
The anisotropy of magnetic susceptibility documents the generation of tectonically produced fabrics in sediments that macroscopically show no evidence of this disruption. The fabric observed in initial accretion is largely produced by overprinting of the original sedimentary susceptibility anisotropy by an E-W horizontal tectonic shortening and vertical extension. The response of the sediments to stress during initial accretion is variable, particularly near the sediment surface, and appears to reflect the inhomogeneous distribution of strain rate in the overthrust sequence. The susceptibility anisotropy of sediments possessing scaly fabric is consistent with the strong orientation of Phyllosilicates seen in thin section, producing a Kmin normal to the scalyness. The slope sediments deposited on the accreted sequence are also affected by tectonic shortening. The accreted sequences at Sites 673 and 674 show a complex history of fabric modification, with previous tectonic fabrics overprinted by later fabric modifications, pointing to continued tectonic shortening during the accretion process. The form of the susceptibility anisotropy axes at Sites 673 and 674 is consistent with NESW shortening, probably reflected in the NW-SE surface expression of the out-of-sequence thrusts. The susceptibility anisotropy appears to document a downhole change in the trend of shortening from E to W at the surface to more NESW at depth, probably as a result of the obliquely trending basement ridge, the Tiburon Rise.
Resumo:
The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.
Resumo:
Results of geological studies at the submarine Vityaz Ridge carried out during cruises 37 and 41 of R/V Akademik Lavrent'ev in 2005 and 2006 are reported. The studied area is located at an near-island trench of the slope in the central part of the Kuril Island arc. Morphologically it consists of two parts: an inner volcanic arc represented by the Great Kuril Range and an outer arc corresponding to the submarine Vityaz Ridge. Diverse rocks composing the basement and the sedimentary cover of the ridge were recovered by dredging. Based on K-Ar dating and geochemistry, volcanics were divided into Paleocene, Eocene, late Oligocene, and Pliocene-Pleistocene complexes. Each of the complexes reflects a tectonomagmatic stage in the ridge evolution. Geochemical and isotope data on the volcanics indicate contribution of ancient crustal material in the magma source and, correspondingly, formation of this structure on the continental basement. Two-stage model ages (TDM2) vary in a wide range from zero values in mafic rocks to 0.77 Ga in felsic varieties, pointing to presence of Precambrian protolith in the source of the felsic rocks of the Vityaz Ridge. The Pliocene-Pleistocene volcanics are classed with tholeiitic, calc-alkaline, and subalkaline series, which differ in alkali contents and REE fractionation. Values of (La/Sm)_n and (La/Yb)_n ratios vary from 0.74 and 0.84 in the tholeiitic varieties to 1.19 and 1.44 in the calc-alkaline and 2.32 and 3.73 in the subalkaline rocks. All three varieties occur within the same volcanic edifices and formed during differentiation of magmatic melts that were channeled along fault zones from the mantle source slightly enriched in crustal component.
Resumo:
Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5-12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (omega Ar)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range omega Ar. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min omega Ar, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range omega Ar within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, omega Ar and carbonate deposition.