6 resultados para Pituitary Hormones.
em Publishing Network for Geoscientific
Resumo:
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n = 62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears.
Resumo:
The high levels of polychlorinated biphenyls (PCBs) and DDT in gray seal (Halichoerus grypus) and ringed seal (Phoca hispida botnica) in the Baltic Sea have been associated with pathological disruptions, including bone lesions and reproductive failures. The underlying environmental and toxicological mechanisms leading to these pathological changes are not yet fully understood. The present study investigated the relationship between the individual contaminant load and bone- and thyroid-related effects in adult gray seals (n = 30) and ringed seals (n = 46) in the highly contaminated Baltic Sea and in reference areas (Sable Island, Canada, and Svalbard, Norway). In the gray seals, multivariate and correlation analyses revealed a clear relationship between circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D), calcium, phosphate, and thyroid hormone (TH) levels and hepatic PCB and DDT load, which suggests contaminant-mediated disruption of the bone and thyroid homeostasis. Contaminants may depress 1,25(OH)2D levels or lead to hyperthyroidism, which may cause bone resorption. In the ringed seals, associations between circulating 1,25(OH)2D, THs, and hepatic contaminants were less prominent. These results suggest that bone lesions observed in the Baltic gray seals may be associated with contaminant-mediated vitamin D and thyroid disruption.
Resumo:
We investigated whether the hepatic cytochrome P450 1A activity (measured as 7-ethoxyresorufin-O-deethylase (EROD)) and plasma thyroid hormone and liver retinoid concentrations were explained by liver and blood levels of halogenated organic contaminants (HOCs) in free-ranging breeding northern fulmars (Fulmarus glacialis) from Bjornoya in the Norwegian Arctic. Hepatic EROD activity and liver levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were positively correlated, suggesting that hepatic EROD activity is a good indicator for dioxin and dioxin-like HOC exposure in breeding northern fulmars. There were not found other strong relationships between HOC concentrations and hepatic EROD activity, plasma thyroid or liver retinoid concentrations in the breeding northern fulmars. It is suggested that the HOC levels found in the breeding northern fulmars sampled on Bjornoya were too low to affect plasma concentrations of thyroid hormones and liver levels of retinol and retinyl palmitate, and that hepatic EROD activity is a poor indicator of polychlorinated biphenyl (PCB) and pesticide exposure.
Resumo:
Thyroid hormones are essential for normal growth and development and disruption of thyroid homeostasis can be critical to young developing individuals. The aim of the present study was to assess plasma concentrations of halogenated organic contaminants (HOCs) in chicks of two seabird species and to investigate possible correlations of HOCs with circulating thyroid hormone (TH) concentrations. Plasma from black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis) chicks were sampled in Kongsfjorden, Svalbard in 2006. The samples were analyzed for thyroid hormones and a wide range of HOCs (polychlorinated biphenyls (PCBs), hydroxylated (OH-) and methylsulphoned (MeSO-) PCB metabolites, organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and perfluorinated compounds (PFCs)). Concentrations of HOCs were generally low in kittiwake and fulmar chicks compared to previous reports. HOC concentrations were five times higher in fulmar chicks compared to in kittiwake chicks. PFCs dominated the summed HOCs concentrations in both species (77% in kittiwakes and 69% in fulmars). Positive associations between total thyroxin (TT4) and PFCs (PFHpS, PFOS, PFNA) were found in both species. Although correlations do not implicate causal relationships per se, the correlations are of concern as disruption of TH homeostasis may cause developmental effects in young birds.