13 resultados para Personnel Turnover
em Publishing Network for Geoscientific
Resumo:
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified. Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in delta18O values coded as "Oi" and "Mi" events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific. Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.
Resumo:
The effects of changing ice and atmospheric conditions on the upwelling of deep nutrient-laden waters and biological productivity in the coastal Beaufort Sea were quantified using a unique combination of in situ and remote-sensing approaches. Repeated instances of ice ablation and upwelling during fall 2007 and summer 2008 multiplied the production of ice algae, phytoplankton, zooplankton and benthos by 2 to 6 fold. Strong wind forcing failed to induce upward shifts in the biological productivity of stratified waters off the shelf.
Resumo:
Three uppermost Cretaceous through basal Paleocene stratigraphic sequences are examined for planktic foraminiferal assemblage stability and temporal succession patterns. These sequences are at mid-latitude South Atlantic DSDP Site 528, then-equatorial Pacific DSDP Site 577 and the Tethyan shelf Ben Gurion section of the Negev, Israel. In order to better estimate biogeographic patterns and habitat preferences, the results of these analyses are compared to previous Cretaceous biogeographic studies and to previous analyses of Cretaceous-Tertiary (K/T) boundary shelf and epicontinental sections. Results indicate that immediately following the K/T boundary, the examined epicontinental and open-ocean sites were exploited primarily by previously epicontinental planktic foraminiferal assemblages. This pattern of K/T boundary assemblage dominance suggests the geologically instantaneous break-down of Late Cretaceous epicontinental and open-ocean biogeographic provincialization. This shift in open-ocean foraminiferal assemblages is not consistent with models of nonselective K/T boundary extinctions, but is consistent with models of extinction resistence and offshore expansion of nearshore taxa. The re-establishment of stable biogeographic differences between open-ocean and epicontinental planktic foraminiferal assemblages occurs by the basal Parvularugoglobigerina eugubina Zone. At open-ocean sites 528 and 577 and the outershelf Ben Gurion section, P0 and P. eugubina Zone faunal records are marked by a pronounced alternation between Paleocene biserial- and non-biserial-dominated assemblages, This alternation appears strongly damped at shelf and epicontinental sections previously examined. The first appearance and peak magnitude of abundant earliest Paleocene trochospiral forms (Parvularugoglobigerina, Eoglobigerina, Morozovella, Globoconusa) also vary from site to site and may depend closely on levels of primary carbonate productivity.
Resumo:
The impact of acute altitude exposure on pulmonary function is variable. A large inter-individual variability in the changes in forced expiratory flows (FEFs) is reported with acute exposure to altitude, which is suggested to represent an interaction between several factors influencing bronchial tone such as changes in gas density, catecholamine stimulation, and mild interstitial edema. This study examined the association between FEF variability, acute mountain sickness (AMS) and various blood markers affecting bronchial tone (endothelin-1, vascular endothelial growth factor (VEGF), catecholamines, angiotensin II) in 102 individuals rapidly transported to the South Pole (2835 m). The mean FEF between 25 and 75% (FEF25-75) and blood markers were recorded at sea level and after the second night at altitude. AMS was assessed using Lake Louise questionnaires. FEF25-75 increased by an average of 12% with changes ranging from -26 to +59% from sea level to altitude. On the second day, AMS incidence was 36% and was higher in individuals with increases in FEF25-75 (41 vs. 22%, P = 0.05). Ascent to altitude induced an increase in endothelin-1 levels, with greater levels observed in individuals with decreased FEF25-75. Epinephrine levels increased with ascent to altitude and the response was six times larger in individuals with decreased FEF25-75. Greater levels of endothelin-1 in individuals with decreased FEF25-75 suggest a response consistent with pulmonary hypertension and/or mild interstitial edema, while epinephrine may be upregulated in these individuals to clear lung fluid through stimulation of beta2-adrenergic receptors.
Resumo:
Planktic foraminifera across the Paleocene-Eocene transition at DSDP Site 401 indicate that the benthic foraminiferal mass extinction occurred within Subzone P 6a of Berggren and Miller (1988), or PS of Berggren et al. (1995) and coincident with a sudden 2.0? excursion in 6r3C values. The benthic foraminiferal extinction event (BFEE) and Sr3C excursion was accompanied by a planktic foraminiferal turnover marked by an influx of warm water species (Morozovella and Acarinina), a decrease in cooler water species (Subbotina), a sudden short-term increase in low oxygen tolerant taxa (Chiloguembelina), and no significant species extinctions. These faunal changes suggest climatic warming, expansion of the oxygen minimum zone, and a well stratified ocean water column. Oxygen isotope data of the surface dweller M. subbotina suggest climate warming beginning with a gradual 0.5? decrease in delta180 in the 175 cm preceding the benthic foraminiferal extinction event followed by a sudden decrease of 1? (4°C) at the BFEE. The delta13C excursion occurred over 27 cm of sediment and, assuming constant sediment accumulation rates, represents a maximum of 23 ka. Recovery to pre-excursion delta13C values occurs within 172 cm, or about 144 ka. Climate cooling begins in Subzone P 6c as indicated by an increase in cooler water subbotinids and acarininids with rounded chambers and a decrease in warm water morozovellids.
Resumo:
The aims of this study were (1) to assess the spatial distribution of orchid species richness in New Guinea, and (2) to examine patterns of species turnover in the orchid community through phytogeographical regionalization. We aimed to achieve these goals using botanical collection records, species distribution models (SDMs) and partitioning around medoids (PAM) clustering.
Resumo:
The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry.
Resumo:
Diazotrophic cyanobacteria often form extensive summer blooms in the Baltic Sea driving their environment into phosphate limitation. One of the main species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the exoenzyme alkaline phosphatase that also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilization of DOP and its compounds (e.g. ATP) by N. spumigena during growth under varying CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus. Cell growth, phosphorus pool fractions, and four DOP-compounds (ATP, DNA, RNA, and phospholipids) were determined in three set-ups with different CO2 concentrations (341, 399, and 508 µatm) during a 15-day batch experiment. The results showed rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments while DOP utilization increased with elevated pCO2, in parallel with the growth stimulation of N. spumigena. During the growth phase, DOP uptake was enhanced by a factor of 1.32 at 399 µatm and of 2.25 at 508 µatm compared to the lowest pCO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of the DOP were not characterized but comprised the most highly utilized fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase, especially in response to the medium and high pCO2 treatment. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations that is accompanied by increasing utilization of DOP as an alternative P source.