5 resultados para Palaeoenvironmental Variability

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene-Kyuele in the NE Siberian Arctic (latitude 71°17'N, longitude 125°34'E). The water-body displays thaw-lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5-m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In northeastern Siberia, Russia, a 1.2 m sediment core was retrieved and radiocarbon dated from a small and shallow lake located at the western side of the lower Lena River (N 69°24', E 123°50', 81 m a.s.l.). The objective of this paper is to reconstruct the palaeoenvironmental variability and to infer major palaeoclimate trends that have occurred since ~ 13.3 cal. kyrs BP. We analysed the diatom assemblages, sedimentology (grain size, total organic carbon (TOC), total nitrogen (TN)), and the elemental and mineralogical composition using X-ray fluorescence (XRF) and X-ray diffractometry (XRD) of the sediment core. Our results show parallel changes in the diatom species composition and sediment characteristics. Enhanced minerogenic sediment input and the occurrence of pyrite is indicative of a cold period between ~ 12.7-11.6 cal. kyrs BP. The diatom data enable a qualitative inference about the local ecological conditions to be made, and reveal an oligotrophic lake system with alkaline and cold conditions during the earliest Holocene. Moderately warmer climates are inferred for the period from ~ 9.1 to 5.7 cal. kyrs BP. The major shift in the diatom assemblage, from dominance of small benthic fragilarioid taxa to a more complex diatom flora with an influx of several achnanthoid and naviculoid diatom species, occurred after a transitional period of about 1400 years (7.1 to 5.7 cal. kyrs BP) at ~ 5.7 cal. kyrs BP, indicating a circumneutral and warmer hydrological regime during the Holocene thermal maximum (HTM). Diatom valve concentrations declined starting ~ 2.8 cal. kyrs BP, but have been rising again since less than or equalt to 600 cal. years BP. This has occurred in parallel to the increased presence of acidophilous diatom taxa (e.g. Eunotia spp.) and decreased presence of small benthic fragilarioid species in the most recent sediments, which is interpreted as the result of neoglacial cooling and subsequent recent climate warming. Our findings are compared to other lake-inferred climate reconstructions along the Lena River. We conclude that the timing and spatial variability of the HTM in the lower Lena River area reveal a temporal delay from north to south.