69 resultados para PALEOGEOGRAPHY
em Publishing Network for Geoscientific
Resumo:
The name "Schlagwasser breccia" is a synopsis of several debris flows in the Warstein area, which can be derived from the Warstein carbonate platform and the Scharfenberg reef. Though only locally developed, the breccia is important for the understanding of paleogeography and sedimentology in the Eastern Sauerland. Considering this breccia some gravitational-resedimentary slide movements between a high, consisting of reef carbonates, and a basin with flinz beds can be pointed out. From the uppermost Middle Devonian to the lowermost Lower Carboniferous several slides yielded the sedimentary components building up the 30 to 50 m thick polymict breccia. Some breccias were redeposited repeatedly as can be verified by different conodont maxima in single samples. Supplying area was the western part of the Warstein high, from which the slide masses glided off to the East and Southeast, more seldom to the West and Westsouthwest. All conodont zones from the upper Middle Devonian up to the lowermost Carboniferous could be identified in the Schlagwasser breccia. Therefore, an uninterrupted continuous sedimentation must have been prevalent in the supplying area; today this area nearly is denuded of flinz beds and cephalopod limestones. The slide masses spread transgressively to the East up to a substratum consisting of different units as massive limestone, flinz beds and cephalopod limestone; they are overlapped by Hangenberg beds, alum schists and siliceous rocks of the Lower Carboniferous. Parts of the substratum were transported during the progress of the slide masses. Proximal and distal parts of the flow masses can be distinguished by the diameter of the pebbles. Graded bedding and banking structures are marked only rarely. Way of transport was up to 3 km. Differently aged slide masses do not always overlap, but are placed side by side, too. Usually the slide masses do not spread out upon a greater area during sedimentation, but form closely limited debris flows. Synsedimentary fracturing and tilting of the reef platform, epirogenetic movements and seaquakes caused the slides. The entire formation period of the breccia includes about 20 millions of years. The longevity of the events points to solid paleomorphological situations around the eastern margin of the carbonate platform.
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
The monograph gives results of studies of sediments and rocks collected from D/S Glomar Challenger in the Pacific Ocean. These studies have been based on the lithological facial analysis applied for the first time for identificating genesis of ocean sediments. These results include new ideas on formation of the Earth's sedimentary cover and can be used for constructing regional and global schemes of ocean paleogeography, reconstructing some structures, correlating sedimentation on continents and in oceans, estimating perspectives of oil- and gas-bearing deposits and ore formation. The monograph also gives the first petrographic classification of organic matter in black shales.
Resumo:
This collective monography by a group of lithologists from the Geological Institute of the USSR Academy of Sciences summarizes materials of the Deep-Sea Drilling Project from the Atlantic Ocean. It gives results of processing materials on the sequences drilled during DSDP Legs 41, 45, 48 and 49. These studies were based on lithological-facial analysis combined with detailed mineralogical-petrographic description. Its chapters give a number of ideas on formation of the Earth sedimentary cover, which can be used for compilation of regional and global schemes of ocean paleogeography, reconstruction of history of some structures in the World Ocean, correlation between sedimentary processes on continents and in oceans, estimation of perspectives for oil and gas fields and ore formation.
Resumo:
This collection prepared to IX Congress of INQUA containes 25 articles concerning general and regional problems of Pleistocene. The chronological scale of the Late Pliocene and Pleistocene, climatical cycles and methods of the absolute dating are considered. Some data obtained by means ef paleomagnetic, thermoluminescence and radiocarbon methods at several point sections (Likhvin, Rostov-Jarosiavsky, Priasovje, Ob-garm, Chagan, Pryobskoje Plateau, Lower Volga) are given.
Resumo:
Changes in Mississippian global paleogeography derived from the reconfiguration of the continents, a reversal in ocean currents and global cooling. Although the tectonic and climatic changes are well-documented, their effects on the distribution of brachiopod fauna are poorly documented. Here we present systematic quantitative analyses on global paleobiogeography based on a global brachiopod database from the Mississippian (i.e., Tournaisian, Visean, and Serpukhovian). The dataset consists of 2123 species of 344 brachiopod genera from 1156 localities. Our results reveal that global provincialism was not evident during the Tournaisian and Visean Stages. Two realms, i.e., the Gondwanan and Paleoequatorial Realms, are recognized during the Tournaisian. The Paleoequatorial Realm dominates during the Visean Stage, whereas the Gondwanan Realm is not documented due to the absence of data points. In contrast to the early and middle Mississippian stages, faunal provincialism is greatly enhanced in the Serpukhovian Stage with Paleotethyan and North American realms easily distinguished. This indicates that the Rheic Ocean was closed before the Serpukhovian due to the collision between Gondwana and Laurussia, that disrupted faunal interchange between the Paleotethys and North America. In addition, the paleolatitude-related thermal gradient was enhanced and the Boreal Realm was distinguished from the Paleotethyan Realm during the onset of the Late Palaeozoic Ice Age (LPIA) in the Serpukhovian. The paleolatitude diversity gradient pattern further shows a distinct shift of diversity center from the southern tropic zone in the Tournaisian and Visean to the northern tropic zone in the Serpukhovian.