52 resultados para Organic input

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent the petrology and weathering conditions in the sediment source areas. Here, we combine both methods to investigate Late Quaternary marine sediments from five cores along a transect across the continental slope off Senegal. This region near the modern summer Intertropical Convergence Zone is particularly sensitive to climate change and receives sediments from several aeolian, fluvial and marine sources. From each of the investigated five GeoB sediment cores (494-2956 m water depth) two time slices were processed which represent contrasting climatic conditions: the arid Heinrich Stadial 1 (~ 15 kyr BP) and the humid Mid Holocene (~ 6 kyr BP). Each sediment sample was split into 16 grain-size fractions ranging from 1.6 to 500 µm. Concentration and grain-size indicative magnetic parameters (susceptibility, SIRM, HIRM, ARM and ARM/IRM) were determined at room temperature for each of these fractions. The joint consideration of whole sediment and magnetic mineral grain-size distributions allows to address several important issues: (i) distinction of two aeolian sediment fractions, one carried by the north-easterly trade winds (40-63 µm) and the other by the overlying easterly Harmattan wind (10-20 µm) as well as a fluvial fraction assigned to the Senegal River (< 10 µm); (ii) identification of three terrigenous sediment source areas: southern Sahara and Sahel dust (low fine-grained magnetite amounts and a comparatively high haematite content), dust from Senegalese coastal dunes (intermediate fine-grained magnetite and haematite contents) and soils from the upper reaches of the Senegal River (high fine-grained magnetite content); (iii) detection of partial diagenetic dissolution of fine magnetite particles as a function of organic input and shore distance; (iv) analysis of magnetic properties of marine carbonates dominating the grain-size fractions 63-500 µm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and 17863_TC values ranging from -28.7? to +2.3?. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (d13C_TOC: -28.9? to -21.5?) and variations in d13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important (as yet unidentified) reservoir for dissolved organic carbon (DOC) from seawater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 m record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ~1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ~500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pulsed decline and eventual extinction of 51 species of elongate, cylindrical deep-sea benthic foraminifera (Stilostomellidae, Pleurostomellidae, and some Nodosariidae) occurred at intermediate water depths (1145-2168 m, Sites 980 and 982) in the northern North Atlantic during the mid-Pleistocene transition (MPT, 1.2-0.6 Ma). In the early Pleistocene, prior to their disappearance, these species comprised up to 20% of the total abundance of the benthic foraminiferal assemblage at 2168 m, but up to only 2% at 1145 m. The MPT extinction of 51 species represents ?20% of the total benthic foraminiferal diversity at bathyal depths in the North Atlantic (excluding the myriad of small unilocular forms). The extinction rate during the MPT was approximately 10 species per 0.1 myr, being one or two orders of magnitude greater than normal background turnover rates of deep-sea benthic foraminifera. Comparison of the precise timings of declines and disappearances (= highest occurrences) of each species shows that they were often diachronous between the two depths. The last of these species to disappear in the North Atlantic was Pleurostomella alternans at ~0.679 and ~0.694 Ma in Sites 980 and 982, respectively, which is in good agreement with the previously documented global "Stilostomella extinction" datum within the period 0.7-0.58 Ma. Comparison with similar studies in intermediate depth waters in the Southwest Pacific Gateway indicates that ~61% of the extinct species were common to both regions, and that although the pattern of pulsed decline was similar, the precise order and timing of the extinction of individual species were mostly different on opposite sides of the world. Previous studies have indicated that this extinct group of elongate, cylindrical foraminifera lived infaunally and had their greatest abundances in poorly ventilated, lower oxygen environments. This is supported by our study where there is a strong positive correlation (r = ~+ 0.8) between the flux of the extinction group and low-oxygen/high organic input species (such as Uvigerina, Bulimina and Bolivina) during the MPT, suggesting a close relationship with lower oxygen levels and high food supply to the sea floor. The absolute abundance, flux, and number of the extinction group of species show a progressive withdrawal pattern with major decreases occurring in cold periods with high d13C values. This might be related to increasing chemical ventilation of glacial intermediate water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cenozoic sediments sampled in ODP Leg 104 on the Vøring Plateau show a distinct variability of the total organic carbon content (TOC) and the accumulation rates of TOC. Based on the geochemical and organic-petrographic characterization of the sedimentary organic matter (OM), the allochthonous and autochthonous proportion of the OM could be quantified. The results clearly demonstrate that high TOC percentages and TOC accumulation rates in Cenozoic sediment sections display a generally high input of allochthonous organic matter. Oxidized and partly well-rounded organic particles built up the main portion of OM within the Miocene, TOC-rich sediments. The most probable source of this oxidized OM are reworked sediments from the Scandinavian shelf. Changes in the input of these organic particles are to some degree correlative with sea-level changes. The Cenozoic accumulation of autochthonous OM is low and does not reveal a clear variation during the Miocene and early Pliocene. In spite of a high accumulation rate of biogenic opal during the Early Miocene, the accumulation rate of autochthonous TOC is low. The autochthonous particle assemblage is dominated by relatively inert OM, like dinoflagellate cysts. This points to an intensive biological and/or early diagenetic degradation of the marine OM under well oxidized bottom water conditions during the last 23 Myr. Nevertheless, a continuation of marine OM degradation during later stages of diagenesis cannot be excluded. A prominent dominance of allochthonous OM over autochthonous is documented with the beginning of the Pliocene. At 2.45 Ma the episodic occurrence of ice-rafted, thermally mature OM reflects the onset of the glacial erosion of Mesozoic, coal and black shale bearing sediments on the Scandinavian and Barents Sea shelves. The first occurrence of these, in view of the actual burial depth, thermally overmature OM particles is, therefore, a marker for the beginning of the strong Scandinavian glaciation and the advance of the glacial front toward the shelves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total organic carbon, amino compounds, and carbohydrates were measured in pore waters and sediments of Pliocene to Pleistocene age from Sites 723 and 724 (ODP Leg 117) to evaluate (1) relationships between organic matter in the sediment and in the pore water, (2) the imprint of lithological variations on the abundance and contribution of organic substances, (3) degradation of amino compounds and carbohydrates with time and/or depth, and (4) the dependence of the ammonia concentration in the pore water on the degradation of amino compounds in the sediment. Total organic carbon concentrations (TOC) of the investigated sediment samples range from 0.9% to 8.7%, and total nitrogen concentrations (TN) from 0.1% to 0.5%. Up to 4.9% of the TOC is contributed by hydrolyzable amino acids (THAA) which are present in amounts between 1.1 and 21.3 µmol/g dry sediment and decrease strongly downhole. Hydrolyzable carbohydrates (THCHO) were found in concentrations from 1.3 to 6.6 ?mol/g sediment constituting between 0.1% and 2.0% of the TOC. Differences between the distribution patterns of monomers in Sites 723 and 724 indicate higher terrigenous influence for Site 724 and, furthermore, enhanced input of organic matter that is relatively resistant to microbial degradation. Lithologically distinct facies close to the Pliocene/Pleistocene boundary yield different organic matter compositions. Laminated horizons seem to correspond with enhanced amounts of biogenic siliceous material and minor microbiological degradation. Total amounts of dissolved organic carbon (DOC) in pore waters vary between 11 and 131 mg/L. Concentrations of DOC as well as of dissolved amino compounds and carbohydrates appear to be related to microbial activity and/or associated redox zones and not so much to the abundance of organic matter in the sediments. Distributions of amino acids and monosaccharides in pore waters show a general enrichment in relatively stable components in comparison to those of the sediments. Nevertheless, the same trend appears between amino acids present in the sediments from Sites 723 and 724 as well as between amino acids in pore waters from these two sites, indicating a direct relation between the dissolved and the sedimentary organic fractions. Different ammonia concentrations in the pore waters of Sites 723 and 724 seem to be related to enhanced release of ammonia from degradation of amino compounds in Site 723.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of downhole stable isotopic (d13Corg [organic carbon] and d15N) and elemental measurements (total organic carbon [TOC], total nitrogen [TN], and carbon/nitrogen [C/N]) of sedimentary organic matter (SOM) along with stable isotopic measurements (d18O and d13C) of left-coiling Neogloboquadrina pachyderma planktonic foraminifers from Ocean Drilling Program Site 1166. TOC and TN measurements indicate a large change from organic-rich preglacial sediments with primary organic matter to organic-poor early glacial and glacial sediments, with mainly recycled organic matter. Results of the stable isotopic measurements of SOM show a range of values that are typical of both marine and terrestrial organic matter, probably reflecting a mixture of the two. However, C/N values are mostly high (>15), suggesting greater input and/or preservation of terrestrial organic matter. Foraminifers are only present in glacial/glaciomarine sediments of latest Pliocene to Pleistocene age at Site 1166 (lithostratigraphic Unit I). The majority of this unit has d13Corg and TOC values that are similar to those of glacial sediments recovered at Site 1167 (lithostratigraphic Unit II) on the slope and may have the same source(s). Although the low resolution of the N. pachyderma (s.) d18O and d13C data set precludes any specific paleoclimatic interpretation, downcore variations in foraminifer d18O and d13C values of 0.5 per mil to 1 per mil amplitude may indicate glacial-interglacial changes in ice volume/temperature in the Prydz Bay region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on concentrations and distribution of particulate matter in the Caspian Sea obtained during surveys in 1981-1983 with use of modified filtering units have shown that over the major part of the sea concentration of particulate matter does dot exceed 1-2 mg/l. Only in the northern Caspian and in coastal regions concentrations correspond to values measured earlier. Total amount of particulate matter in the Caspian Sea is about of 90 million ton, 19.6% in the Northern Caspian, 28.1% in the Middle Caspian, and 52.3% in the Southern Caspian. Contents of carbon in particulate matter of the Central Caspian reach 30-40%, and over a significant part of the sea - 20%. A correlation has been found between areas of increased carbon contents in particulate matter and in bottom sediments. An important role of biofiltration in enrichment of particulates in organic matter has been noted. From data on carbon contents and an estimate of particulate matter input biogenic portion in particulate matter exceeds 50% for the whole sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the Russian-German research project on "Siberian River Run-off (SIRRO)" devoted to the freshwater discharge and its influence on biological, geochemical, and geological processes in the Kara Sea, sedimentological and organic-geochemical investigations were carried-out on two well-dated sediment cores from the Yenisei Estuary area. The main goal of this study was to quantify the terrigenous organic carbon accumulation based on biomarker and bulk accumulation rate data, and its relationship to Yenisei river discharge and climate change through Holocene times. The biomarker data at both cores clearly indicate the predominance of terrigenous organic matter, reaching 70 to 100% and 50 to 80% of the total organic carbon within and directly north of the estuary, respectively. During the last about 9 Cal. kyrs. BP represented in the studied sediment section, siliciclastic sediment and (terrigenous) organic carbon input was strongly influenced by postglacial sea-level rise and climate-related changes in river discharge. The mid-Holocene Climatic Optimum is documented by maximum river discharge between 8.2 and 7.3 Cal. kyrs. BP. During the last 2000 years river discharge probably became reduced, and accumulation of both terrigenous and marine organic carbon increased due to increased coagulation of fine-grained material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Albian/Cenomanian strata in Hole 530A are organically richer than are the post-Cenomanian strata. Organic matter is thermally immature and appears to be of dominantly marine origin with either variable levels of oxidation or variable amounts of terrestrial input. Geochemical data alone cannot establish whether the black shales present in Hole 530A represent deposition within a stagnant basin or within an expanded oxygen-minimum layer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selected core samples from the California Continental Borderland (Sites 467-469) were analyzed to evaluate the nature and composition of the lipids and kerogens in terms of their genetic origin and geological maturity. The lipids were of a multiple origin. On the basis of the homolog distributions of the n-alkanes and n-fatty acids, with the shape and magnitude of the unresolved branched and cyclic hydrocarbons, and the structural and stereochemical compositions of the molecular markers, these lipids were derived from primary autochthonous marine (microbial), from allochthonous terrigenous (higher plant wax), and from recycled (geologically mature organic matter) sources. The kerogens were composed of principally marine microbial detritus with a minor input of allochthonous terrestrial material. For the most part, the samples had undergone a thermal maturation according to a normal geothermal gradient, except in the proximity of intrusives. Such additional thermal stress was evident for the samples from Site 469 and to some extent for Site 467 at about a sub-bottom depth of 700 to 800 meters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed organic geochemical investigations have been performed on sediment samples from upwelling Site 658 and nonupwelling Sites 657 and 659. The major objective of this study has been the relationship between organic carbon accumulation and paleoclimatic and paleoceanographic conditions in the upwelling area off northwest Africa during late Cenozoic times. The study is based on results from organic carbon, nitrogen, and hydrogen analyses, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry. In general, nonupwelling Sites 657 and 659 are characterized by low organic carbon values of less than 0.5%. At Site 657, four events of high organic carbon deposition (total organic carbon of 1%-3%) occur and represent turbidites and a slump interval. The upper Pliocene to Pleistocene sediments of upwelling Site 658 display high organic carbon contents of 0.5%-4%, with higher contents concentrated in the upper Pliocene. Accumulation rates of organic carbon vary between 0.1 and 0.5 gC/cm-**2/1000 yr, with maximum values between 3.5 and 3.1 Ma. Short-term cyclic ("Milankovitch-type") variations in organic carbon accumulation suggest climate-controlled mechanisms causing these fluctuations. The quality of organic matter at Site 658 is a mixture of kerogen type II and HI, with a dominance of the marine type. This is indicated by high hydrogen-index values of 200-400 mgHC/gC, low C/N ratios of 5-15, atomic H/C ratios of 1.0-1.5, and high amounts of marine macerals (alginite and liptodetrinite). We have estimated paleoproductivity for Sites 658 and 659 based on the amount of marine organic carbon. At open-marine Site 659, mean paleoproductivity varies between 20 and 50 gC/m**2/yr. At Site 658, mean paleoproductivity reaches high values of 160 to 320 gC/m**2/yr, very similar to those recorded in modern upwelling areas. The changes in productivity off northwest Africa are linked to changes in nutrient supply caused by both upwelling and fluvial input. The change from a dominantly humid climate to one characterized by fluctuations between humid and fully arid climates in northwest Africa occurs between 3.1 and 2.45 Ma.