39 resultados para Media analysis
em Publishing Network for Geoscientific
Resumo:
The article shows that pollen analysis plays an important role in the prediction of potential settlement areas and, furthermore, can offer a crude determination of settlement duration. Especially when the archaeological data fails to offer a possibility of dating, pollen analysis in connection with 14C can importantly broaden the knowledge base. As in the present case, the results of the Archaeo-Prognosis mapping and the pollen analysis of the Gabelsee are compared and, within this vicinity, confirmend. = Der Beitrag zeigt, dass die Pollenanalyse eine wichtige Rolle für die Vorhersage von potenziellen Siedlungsflächen spielen und darüber hinaus eine grobe Berechnung der Siedlungsdauer bieten kann. Insbesondere wenn die archäologische Datenbasis keine genaue Datierung zulässt, ermöglicht die Pollenanalyse in Verbindung mit der 14C-Datierung eine wichtige Erweiterung der Kenntnisse. Im vorliegenden Fall konnten die Ergebnisse der Archäoprognosekarte mit denjenigen der Pollenanalyse des Gabelsees verglichen und für diesen lokalen Raum bestätigt werden.
Resumo:
On the strongly karstified and almost unvegetated surface of the Zugspitzplatt, at an altitude of about 2290 m in the Wettersteingebirge, there is a doline within which over a period of several thousand years a bed of fine loess-like sediment, almost 1m thick, has accumulated. Notwithstanding the situation of this locality far above the present tree-line, this infill contains quantities of pollen and spores sufficient for pollen analysis without use of any enrichment techniques. Despite poor pollen preservation, it was possible to date the basal layers of this profile on the basis of their pollen assemblages. AMS dating (7415 ± 30 BP) has confirmed that the oldest sediments were laid down during the early Atlantic period, the time of the thermal optimum of the Holocene. At least since that time this site has never been overridden by a glacier. The moraine associated with the Löbben Oscillation between 3400 and 3100 BP - here represented by the so-called Platt Stillstand (Plattstand) - did not quite reach the doline. A diagram shows known Holocene glacial limits. The composition of the pollen assemblages from the two oldest levels with high pollen concentrations strongly suggests that the distance between the doline and the forest was much less during the Atlantic than at present.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.