30 resultados para Marshall, George C. (George Catlett), 1880-1959.
em Publishing Network for Geoscientific
Resumo:
Access to different environments may lead to inter-population behavioural changes within a species that allow populations to exploit their immediate environments. Elephant seals from Marion Island (MI) and King George Island (KGI) (Isla 25 de Mayo) forage in different oceanic environments and evidently employ different foraging strategies. This study elucidates some of the factors influencing the diving behaviour of male southern elephant seals from these populations tracked between 1999 and 2002. Mixed-effects models were used to determine the influence of bathymetry, population of origin, body length (as a proxy for size) and individual variation on the diving behaviour of adult male elephant seals from the two populations. Males from KGI and MI showed differences in all dive parameters. MI males dived deeper and longer (median: 652.0 m and 34.00 min) than KGI males (median: 359.1 m and 25.50 min). KGI males appeared to forage both benthically and pelagically while MI males in this study rarely reached depths close to the seafloor and appeared to forage pelagically. Model outputs indicate that males from the two populations showed substantial differences in their dive depths, even when foraging in areas of similar water depth. Whereas dive depths were not significantly influenced by the size of the animals, size played a significant role in dive durations, though this was also influenced by the population that elephant seals originated from. This study provides some support for inter-population differences in dive behaviour of male southern elephant seals.
Resumo:
Since the early 1990s, phytoplankton has been studied and monitored in Potter Cove (PC) and Admiralty Bay (AB), King George/25 de Mayo Island (KGI), South Shetlands. Phytoplankton biomass is typically low compared to other Antarctic shelf environments, with average spring - summer values below 1 mg chlorophyll a (Chl a)/m**3. The physical conditions in the area (reduced irradiance induced by particles originated from the land, intense winds) limit the coastal productivity at KGI, as a result of shallow Sverdrup's critical depths (Zc) and large turbulent mixing depths (Zt). In January 2010 a large phytoplankton bloom with a maximum of around 20 mg Chl a/m**3, and monthly averages of 4 (PC) and 6 (AB) mg Chl a/m**3, was observed in the area, making it by far the largest recorded bloom over the last 20 yr. Dominant phytoplankton species were the typical bloom-forming diatoms that are usually found in the western Antarctic Peninsula area. Anomalously cold air temperature and dominant winds from the eastern sector seem to explain adequate light : mixing environment. Local physical conditions were analyzed by means of the relationship between Zc and Zt, and conditions were found adequate for allowing phytoplankton development. However, a multiyear analysis indicates that these conditions may be necessary but not sufficient to guarantee phytoplankton accumulation. The relation between maximum Chl a values and air temperature suggests that bottom-up control would render such large blooms even less frequent in KGI under the warmer climate expected in the area during the second half of the present century.
Resumo:
We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with an intermediate diet. Egg size, clutch asymmetry and hatching dates varied between species and years without consistent patterns. In the south polar skuas, 12 to 38% of the variation in these parameters was explained by sea surface temperature, sea ice cover and local weather. In mixed species pairs and brown skuas, the influence of environmental factors on variation in clutch asymmetry and hatching date decreased to 10-29%, and no effect on egg size was found. Annual variation in offspring growth performance also differed between species with variable growth in chicks of south polar skuas and mixed species pairs, and almost uniform growth in brown skuas. Additionally, the dependency on oceanographic and climatic factors, especially local wind conditions, decreased from south polar skuas to brown skua chicks. Consistent in all species, offspring were more sensitive to environmental conditions during early stages; during the late chick stage (>33 d) chick growth was almost independent of environmental conditions. The net breeding success could not be predicted by any environmental factor in any skua species, suggesting it may not be a sensitive indicator of environmental conditions. Hence, the sensitivity of skuas to environmental conditions varied between species, with south polar skuas being more sensitive than brown skuas, and between breeding periods, with the egg parameters being more susceptible to oceanographic conditions. However, during offspring development, local climatic conditions became more important. We conclude that future climate change in the Maritime Antarctic will affect reproduction of skuas more strongly through changes in sea ice cover and sea surface temperature (and the resulting alterations to the marine food web) than through local weather conditions.
Resumo:
Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.
Resumo:
The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.
Resumo:
This study presents soil temperature and moisture regimes from March 2008 to January 2009 for two active layer monitoring (CALM-S) sites at King George Island, Maritime Antarctica. The monitoring sites were installed during the summer of 2008 and consist of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths and one soil moisture probe placed at the bottommost layer at each site (accuracy of ± 2.5%), recording data at hourly intervals in a high capacity datalogger. The active layer thermal regime in the studied period for both soils was typical of periglacial environments, with extreme variation in surface temperature during summer resulting in frequent freeze and thaw cycles. The great majority of the soil temperature readings during the eleven month period was close to 0 °C, resulting in low values of freezing and thawing degree days. Both soils have poor thermal apparent diffusivity but values were higher for the soil from Fildes Peninsula. The different moisture regimes for the studied soils were attributed to soil texture, with the coarser soil presenting much lower water content during all seasons. Differences in water and ice contents may explain the contrasting patterns of freezing of the studied soils, being two-sided for the coarser soil and one-sided for the loamy soil. The temperature profile of the studied soils during the eleven month period indicates that the active layer reached a maximum depth of approximately 92 cm at Potter and 89 cm at Fildes. Longer data sets are needed for more conclusive analysis on active layer behaviour in this part of Antarctica.