11 resultados para MOOC – Massive Open Online Courses
em Publishing Network for Geoscientific
Resumo:
I tested the hypothesis that high pCO2 (76.6 Pa and 87.2 Pa vs. 42.9 Pa) has no effect on the metabolism of juvenile massive Porites spp. after 11 days at 28 °C and 545 µmol quanta/m**2/s. The response was assessed as aerobic dark respiration, skeletal weight (i.e., calcification), biomass, and chlorophyll fluorescence. Corals were collected from the shallow (3-4 m) back reef of Moorea, French Polynesia (17°28.614'S, 149°48.917'W), and experiments conducted during April and May 2011. An increase in pCO2 to 76.6 Pa had no effect on any dependent variable, but 87.2 Pa pCO2 reduced area-normalized (but not biomass-normalized) respiration 36 %, as well as maximum photochemical efficiency (Fv/Fm) of open RCIIs and effective photochemical efficiency of RCIIs in actinic light (Delta F/F'm ); neither biomass, calcification, nor the energy expenditure coincident with calcification (J/g) was effected. These results do not support the hypothesis that high pCO2 reduces coral calcification through increased metabolic costs and, instead, suggest that high pCO2 causes metabolic depression and photochemical impairment similar to that associated with bleaching. Evidence of a pCO2 threshold between 76.6 and 87.2 Pa for inhibitory effects on respiration and photochemistry deserves further attention as it might signal the presence of unpredictable effects of rising pCO2.
Resumo:
In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using 4 different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http.vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improve the retrieval of spectral reflectance for all processors, Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg/m**3), random errors dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and random errors were obtained with MEGS for suspended particulate matter, for which overestimations in te range of 8-16% were found. Only the FUB retrieved CDOM (Coloured Dissolved Organic Matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a~local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in presence of high CDOM attenuation.
Resumo:
Massive sulfide samples from the Bent Hill area were analyzed for 230Th/234U and 231Pa/235U disequilibria. Apparent ages calculated from these ratios are between 8.2 and >300 ka. Concordant ages were found for only three samples that originate near the surface from the clastic sulfide zone and suggest "true" ages of between 8.5 and 16.0 ka (mean of 230Th and 231Pa ages). The uranium vs. depth distribution in the Bent Hill Massive Sulfide deposit suggests an open system for uranium for the deeper part of the deposit, which was probably caused by extensive recrystallization processes inhibiting true age determinations.
Resumo:
The book is a compilation of all available data at the time of publication (1965) on the subject of marine minerals together with the author's original ideas regarding their exploitation. It is one of the most significant publications on ocean resources. It is particularly focused on manganese deposits, their description, sedimentary setting, formation and geochemistry.