6 resultados para Local uniqueness of equilibrium prices

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts from Hole 504B, Leg 83, exhibit remarkable uniformity in major and trace element composition throughout the 1075.5 m of basement drilled. The majority of the basalts, Group D', have unusual compositions relative to normal (Type I) mid-ocean ridge basalts (MORB). These basalts have relatively high mg values (0.60-0.70) and CaO abundances (11.7-13.7%; Ca/Al = 0.78-0.89), but exhibit a marked depletion in compatible trace elements (Cr and Ni); moderately incompatible trace elements (Zr, Y, Ti, etc.); and highly incompatible trace elements (Nb, LREE, etc.). Petrographic and compositional data indicate that most of these basalts are evolved, having fractionated significant amounts of plagioclase, olivine, and clinopyroxene. Melting experiments on similar basalt compositions from the upper portion of Hole 504B (Leg 70; Autio and Rhodes, 1983) indicate that the basalts are co-saturated with olivine and plagioclase and often clinopyroxene on the 1-atm. liquidus. Two rarely occurring groups, M' and T, are compositionally distinct from Group D' basalts. Group T is strongly depleted in all magmaphile elements except the highly incompatible ones (Nb, La, etc.), while Group M' has moderate concentrations of both moderately and highly incompatible trace elements and is similar to Type I MORB. Groups M' and T cannot be related to Group D' nor to each other by crystal fractionation, crystal accumulation, or magma mixing. The large differences in magmaphile element ratios (Zr/Nb, La/Yb) among these three chemical groups may be accounted for by complex melting models and/or local heterogeneity of the mantle beneath the Costa Rica Ridge. Xenocrysts and xenoliths of plagioclase and clinopyroxene similar in texture and mineral composition to crystals in coarse-grained basalts from the lower portion of the hole are common in Hole 504B basalts. These suggest that addition of solid components either from conduit or magma chamber walls has occurred and may be a common source of disequilibrium crystals in these basalts. However, mixing of plagioclase-laden depleted melts (similar to the Costa Rica Ridge Zone basalts) with normal MORB magmas could provide an alternate source for some refractory plagioclase crystals found out of equilibrium in many phyric MORB. The uniformity of major element compositions in Hole 504B basalts affords an ideal situation for investigating the effects of alteration on some major and trace elements in oceanic basalts. Alteration observed in whole-rock samples records primarily two events - a high-temperature and a low-temperature phase. High-temperature phases include: chlorite, talc, albite, actinolite, sphene, quartz, and pyrite. The low-temperature phases include smectite (saponite), epistilbite or laumontite, and minor calcite. Laumontite may actually straddle the gap between the low- and high-temperature mineral assemblages. Alteration is restricted primarily to partial replacement of primary phases. Metamorphic grade, in general, increases from the top to the bottom of Hole 504B (Legs 69, 70, and 83) as seen in the change from a smectiteto- chlorite-dominated secondary mineral assemblage. However, a systematic progression for the interval recovered during Leg 83 is not apparent. Rather, the extent of alteration appears to be a function of the initial texture and fracture density. Variations in whole-rock major and trace element concentrations cannot be attributed convincingly to any differences in alteration observed. Compositional characteristics of the secondary minerals indicated that extensive remobilization of elements has not occurred; local redistribution is suggested in most cases. Thus, the major and trace element signature of these basalts remains effectively the same as the original composition prior to alteration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Middle Valley segment at the northern end of the Juan de Fuca Ridge is a deep extensional rift blanketed with 200-500 m of Pleistocene turbiditic sediment. Sites 857 and 858 were drilled during Ocean Drilling Program Leg 139 to determine whether these two sites were hydrologically linked end members of an active hydrothermal circulation system. Site 858 was placed in an area of active hydrothermal discharge with fluids up to 270°C venting through anhydrite-bearing mounds on top of altered sediment. The shallow basement of fine-grained basalt that underlies the vents at Site 858 is interpreted as a seamount that was subsequently buried by turbidites. Site 857 was placed 1.6 km south of the Site 858 vents in a zone of high heat flow and numerous seismically imaged ridge-parallel faults. Drilling at Site 857 encountered sediments that are increasingly altered with depth and that overlie a series of mafic sills at depths of 460-940 m below sea floor. Sill margins and adjacent baked sediment are highly altered to magnesian chlorite and crosscut with veins filled with quartz, chlorite, sulfides, epidote, and wairakite. The sill interiors vary from slightly altered, with unaltered plagioclase and clinopyroxene in a mesostasis replaced by chlorite, to local zones of intense alteration and brecciation. In these latter zones, the sill interiors are pervasively replaced by chlorite, epidote, quartz, pyrite, titanite, and rare actinolite. The most complete replacement is associated with brecciated horizons with low recovery and slickensides on fracture surfaces, which we interpret as intersections between faults and the sills. Geochemically, the alteration of the sill complex is reflected in significant whole-rock depletions in Ca, Sr, and Na with corresponding enrichments in Mg, Al, and most metals. The latter results from the formation of conspicuous sulfide poikiloblasts. In contrast, metamorphism of the Site 858 seamount includes incomplete albitization of plagioclase phenocrysts and replacement of sparse mafic phenocrysts. Much of the basement alteration at Site 858 is confined to crosscutting veins except for a highly altered and veined horizon at the contact between basaltic basement and the overlying sediment. The sill complex at Site 857 is more highly depleted in 18O (d18O = 2.4 per mil - 4.7 per mil) and more pervasively replaced by secondary minerals relative to the extrusives at Site 858 (d18O = 4.5 per mil - 5.5 per mil). There is no evidence of significant albitization of the plagioclase at Site 857, suggesting high Ca/Na in the pore fluids. Fluid-inclusion data from hydrothermal minerals in altered mafic rocks and veins at Sites 857 and 858 show a consistency of homogenization temperatures, varying from 245 to 270°C, which is within the range of temperatures observed for the fluids venting at Site 858. The consistency of the fluid inclusion temperatures, the lack of albitization within the Site 857 sills, and the apparently low water/rock ratio collectively suggest that the sill complex at Site 857 is in thermal equilibrium and being altered by a highly evolved Ca-rich fluid similar to the fluids now venting at Site 858. The alteration evident in these two deep crustal drillsites is a result of the ongoing hydrothermal circulation and is consistent with downhole logging results, instrumented borehole results, and hydrothermal fluid chemistry. The pervasive alteration of the laterally extensive sill-sediment complex at Site 857 determines the chemistry of the fluids that are venting at Site 858. The limited alteration of the Site 858 lavas suggests that this basement edifice acts as a penetrator or ventilator for the regional hydrothermal reservoir with much of the flow focussed at the highly altered and veined sediment-basalt contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid inclusions in variably altered diabase recovered from Ocean Drilling Program Legs 137 and 140 at Hole 504B, Costa Rica Rift, exhibit fluid salinities up to 3.7 times that of seawater values (11.7 wt% NaCl equivalent) and exhibit uncorrected homogenization temperatures of 125°C to 202°C. The liquid-dominated inclusions commonly are entrapped in zones of secondary plagioclase and may be primary in origin. Fluid salinities are similar to compositions of fluids venting on the seafloor (0.4-7.0 wt% NaCl) and overlap with those measured in metabasalt samples recovered from near the Kane Fracture Zone on the Mid-Atlantic Ridge and from the Troodos ophiolite, Cyprus. The salinity variations may reflect hydration reactions involving formation of secondary mineral assemblages under rock-dominated conditions, which modify the ionic strength of hydrothermal fluids by consuming or liberating water and chloride ion. Rare CO2-CH4-bearing inclusions, subjacent to zones where talc after olivine becomes an important secondary mineral phase (1700 mbsf), may have formed due to local interaction of seawater and olivine at low water to rock ratios. Corrected average fluid inclusion homogenization temperatures exhibit a gradient from 159°C at a depth of 1370 mbsf to 183°C at a depth of 1992 mbsf and are in apparent equilibrium with the present conductive downhole temperatures. These data indicate that fluid inclusions may be used to estimate downhole temperatures if logging data are unavailable. The compositional and thermal evolution of the diabase-hosted fluids may reflect late-stage, off-axis circulation and conductive heating of compositionally modified seawater in the sheeted dike complex at Hole 504B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here a new analytical methodology is described for measuring the isotopic composition of boron in foraminifera using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). This new approach is fast (~10 samples analysed in duplicate per analytical session) and accurate (to better than 0.25 per mil at 95% confidence) with acceptable sample size requirements (1-3 mg of carbonate). A core top calibration of several common planktic and two benthic species from geographically widespread localities shows a very close agreement between the isotopic composition measured by MC-ICPMS and the isotopic composition of B(OH)-4 in seawater (as predicted using the recently measured isotopic equilibrium factor of 1.0272) at the depth of habitat. A down core and core top investigation of boron concentration (B/Ca ratio) shows that the partition coefficient is influenced by [CO2-3] complicating the application of this proxy. Nevertheless, it is demonstrated that these two proxies can be used to fully constrain the carbonate system of surface water in the Caribbean Sea (ODP Site 999A) over the last 130 kyr. This reconstruction shows that during much of the Holocene and the last interglacial period surface water at Site 999A was in equilibrium with the atmosphere with respect to CO2. During the intervening colder periods although the surface water pCO2 was lower than the Holocene, it was a minor to significant source of CO2 to the atmosphere possibly due to either an expansion of the eastern equatorial Atlantic upwelling zone, or a more local expansion of coastal upwelling in the southern Caribbean. Such reorganisation of the oceanic carbonate system in favour of a larger source of CO2 to the atmosphere from the equatorial ocean may require mechanisms responsible for lowering atmospheric CO2 during glacial periods to be more efficient than previously supposed.