3 resultados para Linear multivariate methods

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study subdivides the Potter Cove, King George Island, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis includes in total 42 different environmental variables, interpolated based on samples taken during Australian summer seasons 2010/2011 and 2011/2012. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared and the most reasonable method has been applied. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested and 4, 7, 10 as well as 12 were identified as reasonable numbers for clustering the Potter Cove. Especially the results of 10 and 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban forest health was surveyed on Roznik in Ljubljana (46.05141 N, 14.47797 E) in 2013 by two methods: ICP Forests and UFMO. ICP Forests is most commonly used monitoring programme in Europe - the International Co-operative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests, which is based on systematic grid. UFMO method - Urban Forests Management Oriented method was developed in the frame of EMoNFUr Project - Establishing a monitoring network to assess lowland forest and urban plantations in Lombardy and urban forest in Slovenia (LIFE10 ENV/IT/000399). UFMO is based on non-linear transects (GPS tracks). ICP forests monitoring plots were established in July 2013 in the urban forest Roznik in Ljubljana .The 32 plots are located on sampling grid 500 × 500 m. The grid was down-scaled from the National Forest Monitoring survey, which bases on national sample grid 4 × 4 km. With the ICP forests method the following parameters for each tree within the 15 plots were gathered according to the ICP forests manual for Visual assessment of crown condition and damaging agents: tree species, percentage of defoliation, affected part of the tree, specification of affected part, location in crown, symptom, symptom specification, causal agents / factors, age of damage, damage extent, and damage extent on the trunk. With the UFMO method, the following parameters for each tree that needed sylviculture measure (felling, pruning, sanitary felling, thinning, etc.) were recorded: tree species, breast diameter, causal agent / damaging factor, GPS waypoint and GPS track. For overall picture in the urban forest health problems, also other biotic and abiotic damaging factors that did not require management action were recorded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study subdivides the Weddell Sea, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis uses 28 environmental variables for the sea surface, 25 variables for the seabed and 9 variables for the analysis between surface and bottom variables. The data were taken during the years 1983-2013. Some data were interpolated. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared for the identification of the most reasonable method. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested. For the seabed 8 and 12 clusters were identified as reasonable numbers for clustering the Weddell Sea. For the sea surface the numbers 8 and 13 and for the top/bottom analysis 8 and 3 were identified, respectively. Additionally, the results of 20 clusters are presented for the three alternatives offering the first small scale environmental regionalization of the Weddell Sea. Especially the results of 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.