3 resultados para LINEAR-DEPENDENCE CONDITION
em Publishing Network for Geoscientific
Resumo:
The Antarctic Peninsula has been identified as a region of rapid on-going climate change with impacts on the cryosphere. The knowledge of glacial changes and freshwater budgets resulting from intensified glacier melt is an important boundary condition for many biological and integrated earth system science approaches. We provide a case study on glacier and mass balance changes for the ice cap of King George Island. The area loss between 2000 and 2008 amounted to about 20 km**2 (about 1.6% of the island area) and compares to glacier retreat rates observed in previous years. Measured net accumulation rates for two years (2007 and 2008) show a strong interannual variability with maximum net accumulation rates of 4950 mm w.e./a and 3184 mm w.e./a, respectively. These net accumulation rates are at least 4 times higher than reported mean values (1926-95) from an ice core. An elevation dependent precipitation rate of 343 mm w.e./a (2007) and 432 mm w.e./a (2008) per 100 m elevation increase was observed. Despite these rather high net accumulation rates on the main ice cap, consistent surface lowering was observed at elevations below 270 m above ellipsoid over an 11-year period. These DGPS records reveal a linear dependence of surface lowering with altitude with a maximum annual surface lowering rate of 1.44 m/a at 40 m and -0.20 m/a at 270 m above ellipsoid. These results fit well to observations by other authors and surface lowering rates derived from the ICESat laser altimeter. Assuming that climate conditions of the past 11 years continue, the small ice cap of Bellingshausen Dome will disappear in about 285 years.
Resumo:
Quercus robur L. (pedunculate oak) and Quercus petraea (Matt.) Liebl. (sessile oak) are two European oak species of great economic and ecological importance. Even though both oaks have wide ecological amplitudes of suitable growing conditions, forests dominated by oaks often fail to regenerate naturally. The regeneration performance of both oak species is assumed to be subject to a variety of variables that interact with one another in complex ways. The novel approach of this research was to study the effect of many ecological variables on the regeneration performance of both oak species together and identify key variables and interactions for different development stages of the oak regeneration on a large scale in the field. For this purpose, overstory and regeneration inventories were conducted in oak dominated forests throughout southern Germany and paired with data on browsing, soil, and light availability. The study was able to verify the assumption that the occurrence of oak regeneration depends on a set of variables and their interactions. Specifically, combinations of site and stand specific variables such as light availability, soil pH and iron content on the one hand, and basal area and species composition of the overstory on the other hand. Also browsing pressure was related to oak abundance. The results also show that the importance of variables and their combinations differs among the development stages of the regeneration. Light availability becomes more important during later development stages, whereas the number of oaks in the overstory is important during early development stages. We conclude that successful natural oak regeneration is more likely to be achieved on sites with lower fertility and requires constantly controlling overstory density. Initially sufficient mature oaks in the overstory should be ensured. In later stages, overstory density should be reduced continuously to meet the increasing light demand of oak seedlings and saplings.