12 resultados para LINEAR GROWTH

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

. Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a concept to decide on potential growth processes during periods of shrinking and expanding SR below a precedent maximum. Here we investigated two physiological concepts: the linear growth (LG) concept assuming linear growth vs. the zero growth (ZG) concept assuming no growth during periods of shrunken stems. . We evaluated the physiological mechanisms underlying these two concepts and assessed the respective plausibility with SR data obtained from 15 deciduous and evergreen trees. . The LG concept showed steady growth rates, whereas the ZG concept showed strongly varying growth rates over time, more in accordance with mechanistic expectations. Further, growth increased for maximally 120 min after periods of shrunken stems, indicating limited growth activity during that period. However, the fraction of this extra growth was found to be small. Furthermore, TWD of the ZG concept was better explained by a hydraulic plant model than TWD of the LG concept. . We conclude that periods of shrunken stems allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of corals from one of the world's largest known cold-water coral reef, the Røst Reef off Norway. Two large branching framework-forming cold-water coral specimens, one Lophelia pertusa and one Madrepora oculata were collected alive at 350 m water depth from the Røst Reef at ~67° N and ~9° E. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and the corals trace element compositions were studied using ICP-QMS. Due to the different chemical behaviors of Pb and Ra in the marine environment, 210Pb and 226Ra were not incorporated the same way into the aragonite skeleton of those two cold-water corals. Thus to assess of the growth rates of both specimens we have here taken in consideration the exponential decrease of initially incorporated 210Pb as well as the ingrowth of 210Pb from the decay of 226Ra. Moreover a~post-depositional 210Pb incorporation is found in relation to the Mn-Fe coatings that could not be entirely removed from the oldest parts of the skeletons. The 226Ra activities in both corals were fairly constant, then assuming constant uptake of 210Pb through time the 210Pb-226Ra chronology can be applied to calculate linear growth rate. The 45.5 cm long branch of M. oculata reveals an age of 31 yr and a~linear growth rate of 14.4 ± 1.1 mm yr-1, i.e. 2.6 polyps per year. However, a correction regarding a remaining post-depositional Mn-Fe oxide coating is needed for the base of the specimen. The corrected age tend to confirm the radiocarbon derived basal age of 40 yr (using 14C bomb peak) with a mean growth rate of 2 polyps yr-1. This rate is similar to the one obtained in Aquaria experiments under optimal growth conditions. For the 80 cm-long specimen of L. pertusa a remaining contamination of metal-oxides is observed for the middle and basal part of the coral skeleton, inhibiting similar accurate age and growth rate estimates. However, the youngest branch was free of Mn enrichment and this 15 cm section reveals a growth rate of 8 mm yr-1 (~1 polyp every two to three years). However, the 210Pb growth rate estimate is within the lowermost ranges of previous growth rate estimates and may thus reflect that the coral was not developing at optimal growth conditions. Overall, 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals, however, removal of post-depositional Mn-Fe oxide deposits is a prerequisite. If successful, large branching M. oculata and L. pertusa coral skeletons provide unique oceanographic archive for studies of intermediate water environmentals with an up to annual time resolution and spanning over many decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monthly delta18O records of 2 coral colonies (Porites cf. lutea and P. cf. nodifera) from different localities (Aqaba and Eilat) from the northern Gulf of Aqaba, Red Sea, were calibrated with recorded sea surface temperatures (SST) between 1988 and 2000. The results show high correlation coefficients between SST and delta18O. Seasonal variations of coral delta18O in both locations could explain 91% of the recorded SST. Different delta18O/SST relations from both colonies and from the same colonies were obtained, indicating that delta18O from coral skeletons were subject to an extension rate effect. Significant delta18O depletions are associated with high extension rates and higher values with low extension rates. The relation between coral skeletal delta18O and extension rate is not linear and can be described by a simple exponential model. An inverse relationship extends over extension rates from 1 to 5 mm/yr, while for more rapidly growing corals and portions of colonies the relation is constant and the extension rate does not appear to have a significant effect. We recommend that delta18O values be obtained from fast-growing corals or from portions in which the isotopic disequilibrium is fairly constant (extension rate >5 mm/yr). The results show that interspecific differences in corals may produce a significant delta18O profile offset between 2 colonies that is independent of environmental and extension-rate effects. We conclude that the rate of skeletal extension and the species of coral involved have an important influence on coral delta18O and must be considered when using delta18O records for paleoclimatic reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been hypothesized that endolithic photo-autotrophs inside the skeleton of cold-water corals may have a mutualistic relationship with the coral host positively affecting coral calcification. This study investigated the effect of endolithic photo-autotrophs on the apical septal extension of the cold-water coral Desmophyllum dianthus at Fjord Comau, southern Chile (42.41° - 42.15°S, 72.5°W). The fluorescent staining agent calcein was used to document the linear apical extension of septae for a period of one and a half years between 2006 and 2007. The results showed a severe reduction in extension rates associated with the presence of endolithic photo-autotrophs. Infested individuals grew about half as fast as non-infested polyps with a median value of 1.18 µm/day compared to 2.76 µm/day. Contrary to the initial hypothesis, these results point toward a parasitic relationship between D. dianthus and its endolithic photo-autotrophs potentially impairing coral fitness. However, further data on physiological parameters and other aspects of the calcification process are necessary to confirm these findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern scleractinian corals are classical components of marine shallow warm water ecosystems. Their occurrence and diversity patterns in the geological record have been widely used to infer past climates and environmental conditions. Coral skeletal composition data reflecting the nature of the coral environment are often affected by diagenetic alteration. Ghost structures of annual growth rhythms are, however, often well preserved in the transformed skeleton. We show that these relicts represent a valuable source of information on growth conditions of fossil corals. Annual growth bands were measured in massive hemispherical Porites of late Miocene age from the island of Crete (Greece) that were found in patch reefs and level bottom associations of attached mixed clastic environments as well as isolated carbonate environments. The Miocene corals grew slowly, about 2-4 mm/yr, compatible with present-day Porites from high-latitude reefs. Slow annual growth of the Miocene corals is in good agreement with the position of Crete at the margin of the Miocene reef belt. Within a given time slice, extension rates were lowest in level bottom environments and highest in attached inshore reef systems. Because sea surface temperatures (SSTs) can be expected to be uniform within a time slice, spatial variations in extension rates must reflect local variations in light levels (low in the level bottom communities) and nutrients (high in the attached reef systems). During the late Miocene (Tortonian-early Messinian), maximum linear extension rates remained remarkably constant within seven chronostratigraphic units, and if the relationship of SSTs and annual growth rates observed for modern massive Indo-Pacific Porites spp. applies to the Neogene, minimum (winter) SSTs were 20°-21°C. Although our paleoclimatic record has a low resolution, it fits the trends revealed by global data sets. In the near future we expect this new and easy to use Porites thermometer to add important new information to our understanding of Neogene climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are significantly faster at sea ice algal bloom concentrations compared to concurrent phytoplankton concentrations. Juvenile S. squamata from fast ice off Barrow, Alaska, were fed with different algal concentrations at 0 and 5 °C, simulating ambient high sea ice algal concentrations, concurrent low phytoplankton concentrations, and an intermediate concentration. Growth rates, calculated using a simple linear regression equation, were significantly higher (up to 115 times) at the highest algal concentration compared to the lowest. At the highest algal concentration, juveniles grew faster at 5 °C compared to those feeding at 0 °C with a Q10 of 2.0. We conclude that highly concentrated sea ice algae can sustain faster growth rates of polychaete juveniles compared to the less dense spring phytoplankton concentrations. The earlier melt of Arctic sea ice predicted with climate change might cause a mismatch between occurrence of polychaete juveniles and food availability in the near future. Our data indicate that this reduction in food availability might counteract any faster growth of a pelagic juvenile stage based on forecasted increased water temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thecosome pteropods (shelled pelagic molluscs) can play an important role in the food web of various ecosystems and play a key role in the cycling of carbon and carbonate. Since they harbor an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The impact of changes in the carbonate chemistry was investigated on Limacina helicina, a key species of Arctic ecosystems. Pteropods were kept in culture under controlled pH conditions corresponding to pCO2 levels of 350 and 760 µatm. Calcification was estimated using a fluorochrome and the radioisotope 45Ca. It exhibits a 28 % decrease at the pH value expected for 2100 compared to the present pH value. This result supports the concern for the future of pteropods in a high-CO2 world, as well as of those species dependent upon them as a food resource. A decline of their populations would likely cause dramatic changes to the structure, function and services of polar ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency (F v /F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, alpha alkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of alpha alkenones-H2O with temperature but a positive linear correlation was observed between alpha alkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between alpha alkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of elevated CO2 and the increased acidity in surface oceans is likely to have an impact on photosynthesis via its effects on inorganic carbon speciation and on the overall energetics of phytoplankton. Exposure to UV radiation (UVR) may also have a role in the response to elevated CO2 and acidification, due to the fact that UVR may variously impact on photosynthesis and because of the energy demand of UVR defense. The cell may gain energy by down-regulating the CO2 concentrating mechanism, which may lead to a greater ability to cope with UVR and/or higher growth rates. In order to clarify the interplay of cell responses to increasing CO2 and UVR, we investigated the photosynthetic response of the marine and estuarine diatom Cylindrotheca closterium f. minutissima cultured at either 390 (ambient) or 800 (elevated) ppmv CO2, while exposed to solar radiation with or without UVR (UVR, 280-400 nm). After a 6 day acclimation period, the growth rate of cells was little affected by elevated CO2 and no obvious correlation with the radiation dose (for both PAR and PAR + UV treatments) could be detected. However, the relative electron transport rate was reduced and was more sensitive to UVR in cells main - tained at elevated CO2 as compared to cells cultured at ambient CO2. The CO2 concentrating mechanism was down regulated at 800 ppmv CO2, but was apparently not completely switched off. These data are discussed with respect to their significance in the context of global climate change.