33 resultados para Kernel density estimates
em Publishing Network for Geoscientific
Resumo:
Working with subsistence whale hunters, we tagged 19 mostly immature bowhead whales (Balaena mysticetus) with satellite-linked transmitters between May 2006 and September 2008 and documented their movements in the Chukchi Sea from late August through December. From Point Barrow, Alaska, most whales moved west through the Chukchi Sea between 71° and 74° N latitude; nine whales crossed in six to nine days. Three whales returned to Point Barrow for 13 to 33 days, two after traveling 300 km west and one after traveling ~725 km west to Wrangel Island, Russia; two then crossed the Chukchi Sea again while the other was the only whale to travel south along the Alaskan side of the Chukchi Sea. Seven whales spent from one to 21 days near Wrangel Island before moving south to northern Chukotka. Whales spent an average of 59 days following the Chukotka coast southeastward. Kernel density analysis identified Point Barrow, Wrangel Island, and the northern coast of Chukotka as areas of greater use by bowhead whales that might be important for feeding. All whales traveled through a potential petroleum development area at least once. Most whales crossed the development area in less than a week; however, one whale remained there for 30 days.
Resumo:
In the deep-sea, the Paleocene-Eocene Thermal Maximum (PETM) is often marked by clay-rich condensed intervals caused by dissolution of carbonate sediments, capped by a carbonate-rich interval. Constraining the duration of both the dissolution and subsequent cap-carbonate intervals is essential to computing marine carbon fluxes and thus testing hypotheses for the origin of this event. To this end, we provide new high-resolution helium isotope records spanning the Paleocene-Eocene boundary at ODP Site 1266 in the South Atlantic. The extraterrestrial 3He, 3HeET, concentrations replicate trends observed at ODP Site 690 by Farley and Eltgroth (2003, doi:10.1016/S0012-821X(03)00017-7). By assuming a constant flux of 3HeET we constrain relative changes in accumulation rates of sediment across the PETM and construct a new age model for the event. In this new chronology the zero carbonate layer represents 35 kyr, some of which reflects clay produced by dissolution of Paleocene (pre-PETM) sediments. Above this layer, carbonate concentrations increase for ~165 kyr and remain higher than in the latest Paleocene until 234 +48/-34 kyr above the base of the clay. The new chronology indicates that minimum d13C values persisted for a maximum of 134 +27/-19 kyr and the inflection point previously chosen to designate the end of the CIE recovery occurs at 217 +44/-31 kyr. This allocation of time differs from that of the cycle-based age model of Röhl et al. (2007, doi:10.1029/2007GC001784) in that it assigns more time to the clay layer followed by a more gradual recovery of carbonate-rich sedimentation. The new model also suggests a longer sustained d13C excursion followed by a more rapid recovery to pre-PETM d13C values. These differences have important implications for constraining the source(s) of carbon and mechanisms for its subsequent sequestration, favoring models that include a sustained release
Resumo:
Lemmings construct nests of grass and moss under the snow during winter, and counting these nests in spring is 1 method of obtaining an index of winter density and habitat use. We counted winter nests after snow melt on fixed grids on 5 areas scattered across the Canadian Arctic and compared these nest counts to population density estimated by mark-recapture on the same areas in spring and during the previous autumn. Collared lemmings were a common species in most areas, some sites had an abundance of brown lemmings, and only 2 sites had tundra voles. Winter nest counts were correlated with lemming densities estimated in the following spring (r(s) = 0.80, P < 0.001), but less well correlated with densities the previous autumn (r(s) = 0.55, P < 0.001). Winter nest counts can be used to predict spring lemming densities with a log-log regression that explains 64% of the observed variation. Winter nest counts are best treated as an approximate index and should not be used when precise, quantitative lemming density estimates are required. Nest counts also can be used to provide general information about habitat-use in winter, predation rates by weasels, and the extent of winter breeding.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species, together with the model estimates achieved from these data, allowing models inter-comparison and evaluation of model skills. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. Length frequencies of catch were also extracted according to the definition of fisheries for the period 1956-2010. Using these data, an application of the spatial ecosystem and population dynamics model (SEAPODYM) was developed for the North Atlantic albacore population and fisheries and provided the first spatially explicit estimate of albacore density in the North Atlantic by life stage. These densities by life stage (larval recruits, young immature fish adult mature fish and total biomass) are provided in gridded file (Netcdf) at resolution of 2° x 2° x month.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.