89 resultados para Jones, Charles Colcock, 1804-1863.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluctuations in oxygen (d18O) and carbon (d13C) isotope values of benthic foraminiferal calcite from the tropical Pacific and Southern Oceans indicate rapid reversals in the dominant mode and direction of the thermohaline circulation during a 1 m.y. interval (71-70 Ma) in the Maastrichtian. At the onset of this change, benthic foraminiferal d18O values increased and were highest in low-latitude Pacific Ocean waters, whereas benthic and planktic foraminiferal d13C values decreased and benthic values were lowest in the Southern Ocean. Subsequently, benthic foraminiferal d18O values in the Indo-Pacific decreased, and benthic and planktic d13C values increased globally. These isotopic patterns suggest that cool intermediate-depth waters, derived from high-latitude regions, penetrated temporarily to the tropics. The low benthic d13C values at the Southern Ocean sites, however, suggest that these cool waters may have been derived from high northern rather than high southern latitudes. Correlation with eustatic sea-level curves suggests that sea-level change was the most likely mechanism to change the circulation and/or source(s) of intermediate-depth waters. We thus propose that oceanic circulation during the latest Cretaceous was vigorous and that competing sources of intermediate- and deep-water formation, linked to changes in climate and sea level, may have alternated in importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution, fish tooth Nd isotopic records for eight Deep Sea Drilling Project and Ocean Drilling Program sites were used to reconstruct the nature of late Paleocene-early Eocene deep-water circulation. The goal of this reconstruction was to test the hypothesis that a change in thermohaline circulation patterns caused the abrupt 4-5°C warming of deep and bottom waters at the Paleocene/Eocene boundary - the Paleocene-Eocene thermal maximum (PETM) event. The combined set of records indicates a deep-water mass common to the North and South Atlantic, Southern and Indian oceans characterized by mean epsilon-Nd values of ~-8.7, and different water masses found in the central Pacific Ocean (epsilon-Nd ~-4.3) and Caribbean Sea (epsilon-Nd ~1.2). The geographic pattern of Nd isotopic values before and during the PETM suggests a Southern Ocean deep-water formation site for deep and bottom waters in the Atlantic and Indian ocean basins. The Nd data do not contain evidence for a change in the composition of deep waters prior to the onset of the PETM. This finding is consistent with the pattern of warming established by recently published stable isotope records, suggesting that deep- and bottom-water warming during the PETM was gradual and the consequence of surface-water warming in regions of downwelling.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: