11 resultados para Institute of Painters in Oil Colours (Great Britain)
em Publishing Network for Geoscientific
Resumo:
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of tree growth change can be quantified. We assess the drought risk spatially and temporally using drought probabilities and tree species vulnerabilities across Britain. We assessed the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur) which presently cover around 59% (400,700 ha) of state-managed forests, across lowland and upland sites. Here we show that drought impacts result mostly in reduced tree growth over the next 80 years when using b1, a1b and a1fi IPCC emissions scenarios. We found a maximum reduction of 94% but also a maximum increase of 56% in potential stand yield class in the 2080s from the baseline climate (1961-1990). Furthermore, potential production over the national forest estate for all three species in the 2080s may decrease due to drought by 42% in the lowlands and 32% in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the national forest estate in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.
Resumo:
The dataset is based on samples collected in the summer of 2001 in the Western Black Sea in front of Bulgaria coast (transects at c. Kaliakra and c. Galata). The whole dataset is composed of 26 samples (from 10 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 10-20, 10-25, 25-50, 50-75, 75-90. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska and Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
Im Sedimentationsraum der südwestlichen Ostsee verdient der nordöstliche Teil der Kieler Bucht besonderes Interesse. Dort öffnet sich die wichtigste Verbindung zwischen Ostsee und Nordsee. Von den Austauschvorgängen, durch welche diese Meeresräume aufeinander Einfluß nehmen, ist gerade jenes Gebiet entscheidend betroffen. Die Beobachtung der Dynamik des Austausches, die Beobachtung der Transportlast, welche von den Wassermassen bewegt wird, und schließlich auch die Beobachtung der Beziehungen, welche sich zwischen dem Zusammentreffen von Wassermassen unterschiedlicher physikalischer Eigenschaften und der Sedimentbildung ergeben, läßt deshalb vor allem dort wesentliche Hinweise zum Verständnis der Sedimentationsvorgänge in der südlichen Ostsee erhoffen. In der vorliegenden Arbeit wurden an 49 Durchschnittsproben die Korngrößenverteilungen und Schwermineralgehalte von Sedimenten aus dem Südausgang des Großen Beltes untersucht. 1. Es wurden sechs in sich morphologisch etwa gleichwertige Gebiete ausgegliedert, die jeweils durch Sedimente mit ähnlichen Korngrößenverteilungen ausgezeichnet sind. Nach Lage, Typ und genetischer Ausdeutbarkeit fügen sich diese Gebiete dem von O. PRATJE (1939, 1948) gegebenen Modell der Sedimentationszonen gut ein. 2. Innerhalb dieser Gebiete ergibt sich für Sande in mehr als 20 m Wassertiefe südwärts gerichteter Transport. Oberhalb dieser Tiefe läßt sich stellenweise nordwärts gerichteter Transport nachweisen. 3. Der Schwermineralgehalt der Sedimente bleibt immer unter zwei Prozent. Die höchsten Anteile (1,7 bzw. 1,9%) werden in den Sedimenten der Tiefen Rinne und der ufernahen Bereiche des Großen Beltes angetroffen. 4. Die Korngrößenverteilungen der Sedimente werden nach der Lage der Modi in bis zu drei (Kies-, Sand-, Silt-) Komponenten zerlegt. Die Beteiligung der Silt-Komponente wird entscheidend von der Salzgehaltssprungschicht beeinflußt. 5. Es bestehen offensichtlich Zusammenhänge zwischen der Schlicksedimentation und der Salzgehaltsschichtung auch in der weiteren südlichen Ostsee.
Resumo:
The dataset is based on samples collected in the spring of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 76 samples (from 27 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling on zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
Hydrocarbon seepage is a widespread process at the continental margins of the Gulf of Mexico. We used a multidisciplinary approach, including multibeam mapping and visual seafloor observations with different underwater vehicles to study the extent and character of complex hydrocarbon seepage in the Bay of Campeche, southern Gulf of Mexico. Our observations showed that seafloor asphalt deposits previously only known from the Chapopote Knoll also occur at numerous other knolls and ridges in water depths from 1230 to 3150 m. In particular the deeper sites (Chapopopte and Mictlan knolls) were characterized by asphalt deposits accompanied by extrusion of liquid oil in form of whips or sheets, and in some places (Tsanyao Yang, Mictlan, and Chapopote knolls) by gas emission and the presence of gas hydrates in addition. Molecular and stable carbon isotopic compositions of gaseous hydrocarbons suggest their primarily thermogenic origin. Relatively fresh asphalt structures were settled by chemosynthetic communities including bacterial mats and vestimentiferan tube worms, whereas older flows appeared largely inert and devoid of corals and anemones at the deep sites. The gas hydrates at Tsanyao Yang and Mictlan Knolls were covered by a 5-to-10 cm-thick reaction zone composed of authigenic carbonates, detritus, and microbial mats, and were densely colonized by 1-2 m-long tube worms, bivalves, snails, and shrimps. This study increased knowledge on the occurrences and dimensions of asphalt fields and associated gas hydrates at the Campeche Knolls. The extent of all discovered seepage structure areas indicates that emission of complex hydrocarbons is a widespread, thus important feature of the southern Gulf of Mexico.
Resumo:
Vertical distribution of zooplankton biomass from the surface to bottom layers (3400 m) is examined. Material was collected layer by layer by a BR 113/140 net at 41°59' N and 133°37' E on July 2 and 3, 1970. Quantity of plankton below 1000 m was found to be much less than at corresponding depths in the adjacent regions of the ocean. This impoverishment is due to absence of oceanic bathypelagic animals in deep layers of the Sea of Japan. Absence of specialized predators (plankton-feeders) deep in the Sea of Japan results in underconsumption of interzonal animals that sink to great depths. Upon dying they should reach the floor in larger quantities than in the ocean.