5 resultados para Guise, Henri, I de Lorraine, 3. duc de, called La Balafre, 1550-1588
em Publishing Network for Geoscientific
Resumo:
Ecological work carried out on the Antarctic and Magellan shelves since the first IBMANT conference held at the UMAG, Punta Arenas in 1997 is summarized to identify areas where progress has been made and others, where impor- tant gaps have remained in understanding past and present interaction between the Antarctic and the southern tip of South America. This information is complementary to a review on shallow-water work along the Scotia Arc (Barnes, 2005) and recent work done in the deep sea (Brandt and Hilbig, 2004). While principally referring to shipboard work in deeper water, above all during the recent international EASIZ and LAMPOS campaigns, relevant work from shore stations is also included. Six years after the first IBMANT symposium, significant progress has been made along the latitudinal gradient from the Magellan region to the high Antarctic in the fields of biodiversity, biogeography and community structure, life strategies and adaptations, the role of disturbance and its significance for biodiversity, and trophic coupling of the benthic realm with the water column and sea ice. A better understanding has developed of the role of evolutionary and ecological factors in shaping past and present-day environmental conditions, species composition and distribution, and ecosystem functioning. Furthermore, the science community engaged in unravelling Antarctic-Magellan interactions has advanced in methodological aspects such as new analytical approaches for comparing biodiversity derived from visual methods, growth and age determination, trophic modelling using stable isotope ratios, and molecular approaches for taxonomic and phylogenetic purposes. At the same time, much effort has been invested to complement the species inventory of the two adjacent regions. However, much work remains to be done to fill the numerous gaps. Some perspectives are outlined in this review, and sug- gestions are made where particular emphasis should be placed in future work, much of which will be developed in the frame of SCAR's EBA (Evolution and Biodiversity in the Antarctic) programme.
Resumo:
Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 µg Chl a/L with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 µg/L in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 µg total Chl a/L in the surface, and up to 0.4 µg Chl a/L at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX.
Resumo:
The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.