95 resultados para Gore, Christopher, 1758-1827.
em Publishing Network for Geoscientific
Resumo:
In the Arctic the currently observed rising air temperature results in more frequent calving of icebergs. The latter are derived from tidewater glaciers. Arctic macrozoobenthic soft-sediment communities are considerably disturbed by direct hits and sediment reallocation caused by iceberg scouring. With the aim to describe the primary succession of macrozoobenthic communities following these events, scientific divers installed 28 terracotta containers in the soft-sediment off Brandal (Kongsfjorden, Svalbard, Norway) at 20 m water depth in 2002. The containers were filled with a bentonite-sand-mixture resembling the natural sediment. Samples were taken annually between 2003 and 2007. A shift from pioneering species (e.g. Cumacea: Lamprops fuscatus) towards more specialized taxa, as well as from surface-detritivores towards subsurface-detritivores was observed. This is typical for an ecological succession following the facilitation and inhibition succession model. Similarity between experimental and non-manipulated communities from 2003 was significantly highest after three years of succession. In the following years similarity decreased, probably due to elevated temperatures, which prevented the fjord-system from freezing. Some organisms numerically important in the non-manipulated community (e.g., the polychaete Dipolydora quadrilobata) did not colonies the substrate during the experiment. This suggests that the community had not fully matured within the first three years. Later, the settlement was probably impeded by consequences of warming temperatures. This demonstrates the long-lasting effects of severe disturbances on Arctic macrozoobenthic communities. Furthermore, environmental changes, such as rising temperatures coupled with enhanced food availability due to an increasing frequency of ice-free days per year, may have a stronger effect on succession than exposure time.
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.