6 resultados para Good Agricultural Practices

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This computational model of irrigation agriculture is used to study the effects of salinization in Mesopotamia. Scholars have long suspected that central and southern Mesopotamia present environments which limited agricultural production over long-term periods. In regions such as central Mesopotamia, where salinization likely affected settlement in different periods but was more manageable than in more southern regions, fallowing regimes, natural and engineered leaching, and decisions made on when to crop were strategies applied in order to limit the effects of salinization. The model is used to assess the effectiveness of these coping strategies by incorporating projected climate, soil, and landscape conditions with agricultural practices. The simulation results not only demonstrate the effectiveness and limitations of techniques to inhibiting progressive salinization but can be compared with the archaeological record in order to determine if the results correspond to past events and help to interpret past settlement history.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Australian-Indonesian monsoon has a governing influence on the agricultural practices and livelihood in the highly populated islands of Indonesia. However, little is known about the factors that have influenced past monsoon activity in southern Indonesia. Here, we present a ~6000 years high-resolution record of Australian-Indonesian summer monsoon (AISM) rainfall variations based on bulk sediment element analysis in a sediment archive retrieved offshore northwest Sumba Island (Indonesia). The record suggests lower riverine detrital supply and hence weaker AISM rainfall between 6000 yr BP and ~3000 yr BP compared to the Late Holocene. We find a distinct shift in terrigenous sediment supply at around 2800 yr BP indicating a reorganization of the AISM from a drier Mid Holocene to a wetter Late Holocene in southern Indonesia. The abrupt increase in rainfall at around 2800 yr BP coincides with a grand solar minimum. An increase in southern Indonesian rainfall in response to a solar minimum is consistent with climate model simulations that provide a possible explanation of the underlying mechanism responsible for the monsoonal shift. We conclude that variations in solar activity play a significant role in monsoonal rainfall variability at multi-decadal and longer timescales. The combined effect of orbital and solar forcing explains important details in the temporal evolution of AISM rainfall during the last 6000 years. By contrast, we find neither evidence for volcanic forcing of AISM variability nor for a control by long-term variations in the El Niño-Southern Oscillation (ENSO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.