14 resultados para Glycine max (L.) Merr.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nodules occur in the siliceous calcareous ooze and siliceous marl at Site 503 in the eastern equatorial Pacific. They are present below a depth of about 11 meters throughout the green-colored reduced part of the section down to 228 meters, although they are most abundant between 30 and 85 meters. They are cylindrical or barrel-shaped, up to 70 mm long, and usually have an axial channel through them or are hollow. They appear to have formed around and/or within burrows. XRD studies and microprobe analyses show that they are homogeneous and consist of calcian rhododrosite and minor calcite; Mn is present to the extent of about 30%. Isotopic analyses of the carbonate give carbon values which range from -1.2 per mil to -3.8 per mil, and oxygen isotope compositions vary from +4.0 per mil to +6.0 per mil. These values are different from those for marine-derived carbonates as exemplified by the soft sediment filling of a burrow: d13C, -0.26 per mil; d18O, +1.05 per mil. The carbon isotope data indicate that carbonate derived (possibly indirectly) from seawater was mixed with some produced by organic diagenesis to form the nodules. The d18O values suggest that although they formed near the sediment surface, some modification or the introduction of additional diagenetic carbonate occurred during burial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined (1) the abundance and isotopic composition of pyrite, monosulphide, elemental sulphur, organically bound sulphur, and dissolved sulphide; (2) the partition of ferric and ferrous iron; (3) the organic carbon contents of sediments recovered at two sites drilled on the Peru Margin during Leg 112 of the Ocean Drilling Program. Sediments at both sites are characterised by high levels of organically bound sulphur (OBS). OBS comprises up to 50% of total sedimentary sulphur and up to 1% of bulk sediment. The weight ratio of S to C in organic matter varies from 0.03 to 0.15 (mean = 0.10). Such ratios are like those measured in lithologically similar, but more deeply buried petroleum source rocks of the Monterey and Sisquoc formations in California. The sulphur content of organic matter is not limited by the availability of porewater sulphide. Isotopic data suggest that sulphur is incorporated into organic matter within a metre of the sediment surface, at least partly by reaction with polysulphides. Most inorganic Sulphur occurs as pyrite. Pyrite formation occurred within surface sediments and was limited by the availability of reactive iron. But despite highly reducing sulphidic conditions, only 35-65% of the total iron was converted to sulphide; 10-30% of the total iron still occurs as Fe(III). In surface sediments, the isotopic composition of pyrite is similar to that of both iron monosulphide and dissolved sulphide. Either pyrite, like monosulphide, formed by direct reaction between dissolved sulphide and detrital iron, and/or the sulphur species responsible for converting FeS to FeS2 is isotopically similar to dissolved sulphide. Likely stoichiometries for the reaction between ferric iron and excess sulphide imply a maximum resulting FeS2:FeS ratio of 1:1. Where pyrite dominates the pool of iron sulphides, at least some pyrite must have formed by reaction between monosulphide and elemental sulphur and/or polysulphide. Elemental sulphur (S°) is most abundant in surface sediments and probably formed by oxidation of sulphide diffusing across the sediment-water interface. In surface sediments, S° is isotopically heavier than dissolved sulphide, FeS and FeS2 and is unlikely to have been involved in the conversion of FeS to FeS2. Polysulphides are thus implicated as the link between FeS and FeS2.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the concentrations of (1) pore-water sulfide and (2) solid-phase pyrite, iron monosulfide (=acid volatile sulfide), elemental sulfur, and extractable and nonextractable organic ("kerogen") sulfur in sediments from Ocean Drilling Program (ODP) Sites 680 and 686. Pore-water sulfide defines classic "bell-shaped" profiles. Maximum concentrations of 6 to 12 mM occur where sulfate is exhausted, or is most depleted, at depths between 15 and 50 mbsf. Sulfide resulting from bacterial sulfate reduction reacts in three ways: (1) some is reoxidized to elemental sulfur in surface sediments; (2) some reacts with detrital iron minerals to form iron monosulfide and pyrite, primarily in the top meter or two of the sediment; and (3) some reacts with, and is incorporated into, kerogen. Incorporation of reduced sulfur into kerogen occurs over the top 15 m of the sediment at both Sites 680 and 686, after the main phase of pyrite formation. Up to 45% of the total sedimentary sulfur is organically bound, and concentrations of 12 wt% sulfur are reached in the kerogen. These values are like those measured in lithologically similar, but more deeply buried, sediments from the Monterey Formation.