10 resultados para GYMNOPHORA DIPTERA
em Publishing Network for Geoscientific
Resumo:
Knots arrive on Ellesmere Island in late May or early June. At Hazen Camp small flocks were present on 3 June 1966, but the main influx occurred 5 June when many flocks were seen ranging in size from 6 to 60 individuals. The sexes appeared to arrive together, but the manner of pair-formation was not determined. By 7 June pairs were distributed over the tundra with large feeding flocks forming at snowfree wet marshy areas. Most nests were on Dryas-hummocked slopes and tundra, either dry or moist, with some on clay plains and summits in a mixed Dryas and Salix vegetation. A census area of 240 ha supported at least 3 breeding pairs, and possibly 5; the total number of pairs breeding in the Hazen Camp study area was estimated to be about 25 (1.09 pairs/km**2). Egg-laying (4 nests) extended from 15 to 28 June, with 3 of the 4 sets completed between 20 and 23 June. Both sexes incubated, one of the pair more regularly than the other. The song-flight display of the male was performed most frequently during egglaying and incubation. The incubation period of the last egg in one clutch was established as being between 21.5 and 22.4 days. Four nests hatched between 12 and 20 July, and the hatching period of the entire clutch was less than 24 hours. Four of 7 nests (57 %) survived and egg survival (53 %) was low. Families left the nesting area so on after hatching, concentrating at ponds where food was readily available for the young. Both adults attended the young during the pre-fledging period, but the females apparently departed before the young had hedged. Males left once the young could fly and the adult fall migration was complete by early August. Most 01 the young departed belore mid-August. Fall migration is complete by late August or early September. The breeding season appears to be timed to peak load supply for the young. Adult Chironomidae emergence was highest between 3 and 17 July, the period during which most successful nests hatched. The increasing scarcity of adult insects for the young after mid-July was offset by family movements over the tundra and the early departure of half the adult population. Food also seemed to influence the distribution of breeding pairs aver the tundra, restricting them to the general vicinity of marshes, streams, and ponds where food is most available when the young hatch. Territoriality in the Knot appears to be closely associated with the protection of the nest against predators and has at least a local effect in regulating the number of breeding pairs. Plant material was important in the diet of adult Knots throughout the summer and the primary food from the time of arrival until mid-June. After mid-June the percentage of animal matter increased as dipterous insects became available (especially adult Chironomidae), but plant materials continued to constitute a large part of the diet, usually more than 50 %. The food of the young before fledging consisted principally of adult chironomids.
Resumo:
There is a long tradition of river monitoring using macroinvertebrate communities to assess environmental quality in Europe. A promising alternative is the use of species life-history traits. Both methods, however, have relied on the time-consuming identification of taxa. River biotopes, 1-100 m**2 'habitats' with associated species assemblages, have long been seen as a useful and meaningful way of linking the ecology of macroinvertebrates and river hydro-morphology and can be used to assess hydro-morphological degradation in rivers. Taxonomic differences, however, between different rivers had prevented a general test of this concept until now. The species trait approach may overcome this obstacle across broad geographical areas, using biotopes as the hydro-morphological units which have characteristic species trait assemblages. We collected macroinvertebrate data from 512 discrete patches, comprising 13 river biotopes, from seven rivers in England and Wales. The aim was to test whether river biotopes were better predictors of macroinvertebrate trait profiles than taxonomic composition (genera, families, orders) in rivers, independently of the phylogenetic effects and catchment scale characteristics (i.e. hydrology, geography and land cover). We also tested whether species richness and diversity were better related to biotopes than to rivers. River biotopes explained 40% of the variance in macroinvertebrate trait profiles across the rivers, largely independently of catchment characteristics. There was a strong phylogenetic signature, however. River biotopes were about 50% better at predicting macroinvertebrate trait profiles than taxonomic composition across rivers, no matter which taxonomic resolution was used. River biotopes were better than river identity at explaining the variability in taxonomic richness and diversity (40% and <=10%, respectively). Detailed trait-biotope associations agreed with independent a priori predictions relating trait categories to near river bed flows. Hence, species traits provided a much needed mechanistic understanding and predictive ability across a broad geographical area. We show that integration of the multiple biological trait approach with river biotopes at the interface between ecology and hydro-morphology provides a wealth of new information and potential applications for river science and management.
Resumo:
The scope of this research was to find out, how important is the presence of brackish water for the formation of the characteristical littoral subsoil fauna in the interstitial spaces of beaches. There is little precipitation in the Red Sea area and therefore little influence of freshwater on the beach. Moreover, the sandy beach of Sarso Island (Farasan Archipelago) is bordered landwards and underneath by solid limestone, preventing subsoil fresh water, if there is any, from penetrating into the beach region. The salinity of the interstitial water from Sarso beach lies a little above the salinity of the adjacent sea. The microfauna of Sarso beach is composed to a rather big proportion of such species that are known to be characteristical littoral subsoil water species, partially of world wide distribution. The ecological analysis of this fauna, i.e. the freeliving Nematodes, reveals the presence of two distinct associations: 1. the association of the low level subsoil region, close to the sea, with clear interstitial water, subject to regular exchange with the water of the adjcent sea. 2. the association of the high level subsoil region, 4-10 meter distant from the sea, with brownish water. Contrary to earlier results there is no distinction in salinity between the two associations, so it is not longer justified to apply the term brackish water fauna on the animals living in the association of the high level subsoil region.