3 resultados para Frequency chirp effects
em Publishing Network for Geoscientific
Resumo:
Access to different environments may lead to inter-population behavioural changes within a species that allow populations to exploit their immediate environments. Elephant seals from Marion Island (MI) and King George Island (KGI) (Isla 25 de Mayo) forage in different oceanic environments and evidently employ different foraging strategies. This study elucidates some of the factors influencing the diving behaviour of male southern elephant seals from these populations tracked between 1999 and 2002. Mixed-effects models were used to determine the influence of bathymetry, population of origin, body length (as a proxy for size) and individual variation on the diving behaviour of adult male elephant seals from the two populations. Males from KGI and MI showed differences in all dive parameters. MI males dived deeper and longer (median: 652.0 m and 34.00 min) than KGI males (median: 359.1 m and 25.50 min). KGI males appeared to forage both benthically and pelagically while MI males in this study rarely reached depths close to the seafloor and appeared to forage pelagically. Model outputs indicate that males from the two populations showed substantial differences in their dive depths, even when foraging in areas of similar water depth. Whereas dive depths were not significantly influenced by the size of the animals, size played a significant role in dive durations, though this was also influenced by the population that elephant seals originated from. This study provides some support for inter-population differences in dive behaviour of male southern elephant seals.
Resumo:
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 µatm) and at elevated levels (750 and 1400 µatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 µatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 µatm and 1400 µatm pCO2, respectively, than at 390 µatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Resumo:
Understanding the impact of ocean acidification and warming on communities and ecosystems is a researcher priority. This can only be achieved through a combination of experimental and field approaches that would allow developing a mechanistic understanding of impacts across level of biological organizations. Surprisingly, most published studies are still focusing on single species responses with little consideration for interspecific interactions. In this study, the impacts of a 3 days exposure to three parameters (temperature, pH, and presence/absence of the predator cue of the crab Charybdis japonica) and their interactions on an ecologically important endpoint were evaluated: the byssus production of the mussel Mytilus coruscus. Tested temperatures (25°C and 30°C) were within the present range of natural variability whereas pH (8.1, 7.7, and 7.4) covered present as well as near-future natural variability. As expected, the presence of the crab cue induced an antipredator response in Mytilus coruscus (significant 10% increase in byssus secretion rate, 22% increase in frequency of shed byssus, and 30% longer byssus). Decreased pH but not temperature had a significant negative impact on the same endpoints (up to a 17% decrease in byssus secretion rate, 40% decrease in frequency of shed byssus, and 10% shorter byssus at pH 7.3 as compared with pH 8.1) with no significant interactions between the three tested parameters. In this study, it has been hypothesized that pH and predator cue have different modes of action and lead to conflicting functional responses (escape response versus stronger attachment). Functional consequences for ecosystem dynamics still need to be investigated.