21 resultados para Foreland

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early- and Middle-Miocene sediments of the North Alpine Foreland Basin (NAFB) in Southern Germany contain one of the world richest regional records of silicified wood. Here we analyze over 1,000 identifiable samples, belonging to 80 wood anatomical taxa from 61 stratigraphically well-dated localities using principally the Coexistence Approach. The samples investigated originate from fluvial sediments representing periods of intensified surface runoff in the NAFB and therefore represent and provide information pertaining to the wet end-member of the fluctuating climate system. The dry end of the climate system is represented in the profiles either by hiatuses or palaeosoils. The dataset is split into four xylofloras: (I) the Ortenburg xyloflora (Late Ottnangian; ~17.5 to 17.3 Ma) originating from a paratropical evergreen Carapoxylon (Xylocarpus) forest; (II) the Southern Franconian Alb xyloflora (Late Karpatian; 17.0 to ~16.3 Ma) originating from a subtropical semideciduous limestone forest; (III) the upper Older Series xyloflora (Early Badenian; ~16.3 to ~15.3 Ma) originating from a subtropical oak-laurel forest; and (IV) the upper Middle Series xyloflora (Middle Badenian; 14.3 to ~13.8 Ma) originating from a subtropical dry deciduous forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide variety of environmental records is necessary for analysing and understanding the complex Late Quaternary dynamics of permafrost-dominated Arctic landscapes. A NE Siberian periglacial key region was studied in detail using sediment records, remote sensing data, and terrain modelling, all incorporated in a geographical information system (GIS). The study area consists of the Bykovsky Peninsula and the adjacent Khorogor Valley in the Kharaulakh Ridge situated a few kilometres southeast of the Lena Delta. In this study a comprehensive cryolithological database containing information from 176 sites was compiled. The information from these sites is based on the review of previously published borehole data, outcrop profiles, surface samples, and our own field data. These archives cover depositional records of three periods: from Pliocene to Early Pleistocene, the Late Pleistocene and the Holocene. The main sediment sequences on the Bykovsky Peninsula consist of up to 50 m thick ice-rich permafrost deposits (Ice Complex) that were accumulated during the Late Pleistocene. They were formed as a result of nival processes around extensive snowfields in the Kharaulakh Ridge, slope processes in these mountains (such as in the Khorogor Valley), and alluvial/proluvial sedimentation in a flat accumulation plain dominated by polygonal tundra in the mountain foreland (Bykovsky Peninsula). During the early to middle Holocene warming, a general landscape transformation occurred from an extensive Late Pleistocene accumulation plain to a strongly thermokarst-dominated relief dissected by numerous depressions. Thermokarst subsidence had an enormous influence on the periglacial hydrological patterns, the sediment deposition, and on the composition and distribution of habitats. Climate deterioration, lake drainage, and talik refreezing occurred during the middle to late Holocene. The investigated region was reached by the post-glacial sea level rise during the middle Holocene, triggering thermo-abrasion of ice-rich coasts and the marine inundation of thermokarst depressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of rock clasts and of heavy minerals in upper Miocene coarse detrital units drilled along the East Sardinia passive-type continental margin (Sites 654, 653, 652, and 656) reveal that the stretched basement contains quite complex rock suites. Taking also into account previous sampling data, in moving from west to east across the margin, the nature of the basement changes drastically. To the west there are mostly Hercynian basement rocks with their cover, referable to the alpine foreland of the Corsica-Sardinia block. To the east, along the lower margin, where crustal thinning is quite severe, the basement contains rock suites referable to a pre-upper Tortonian orogenized zone with units constituting parts of the Alpine and Apenninic chains (presumably with thickened continental crust prior to stretching). Largest thinning and ocean forming occurred then, in a rather short time, mostly at the expense of unstable crust just thickened by orogenetic/tectogenetic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibrous calcite veins with organic inclusions have been widely considered as indicators of oil and gas generation and migration under overpressure. Abundant fibrous calcite veins containing organic-bearing inclusions occur in faulted Lower Paleozoic through Triassic hydrocarbon source rocks in the Dabashan Foreland Belt (DBF). d13CPDB and d18OPDB values of the fibrous calcite range from - 4.8 to -1.9 to per mil and - 12.8 to - 8.4 per mil respectively, which is lighter than that of associated carbonate host rocks ranging from - 1.7 to + 3.1 per mil and - 8.7 to - 4.5 per mil. A linear relationship between d13CPDB and d18OPDB indicates that the calcite veins were precipitated from a mixture of basinal and surface fluids. The fibrous calcite contains a variety of inclusions, such as solid bitumen, methane bearing all-liquid inclusions, and vapor-liquid aqueous inclusions. Homogenization temperatures of aqueous inclusions range from 140 to 196° with an average of 179°. Salinities of aqueous inclusions average 9.7 wt% NaCl. Independent temperatures from bitumen reflectance and inclusion phase relationships of aqueous and methane inclusions were used to determine fluid pressures. Results indicate high pressures, elevated above typical lithostatic confining pressure, from 150 to 200 MPa. The elevated salinity and high temperature and pressure conditions of the fibrous calcite veins argue against an origin solely from burial overpressure resulting from clay transformation and dehydration reactions. Instead fluid inclusion P-T data and geochemistry results and regional geology indicate abnormally high pressures during fluid migration. These findings indicate that tectonic stress generated fracture and fault fluid pathways and caused migration of organic bearing fluids from the DBF during the Yanshan orogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen and macrofossil analysis of lake sediments revealed the complete development of vegetation from Riss late-glacial to early Würm glacial times at Samerberg (12°12' E, 47°45' N, 600 m a.s.l) on the northern border of the Alps. The pollen bearing sediments overlie three stratigraphic units, at the base a ground-moraine, then a 13 m thick layer of pollen free silt and clay, and then a younger moraine; all the sediments including the pollen bearing sediments, lie below the Würm moraine. The lake, which had developed in an older glacial basin, became extinct, when the ice of the river Inn glacier filled its basin during Würm full-glacial time at the latest. One interglacial, three interstadials, and the interdigitating treeless periods were identified at Samerberg. Whereas the cold periods cannot be distinguished from one another pollenanalytically, the interglacial and the two older interstadials have distinctive characteristics. A shrub phase with Juniperus initiated reforestation and was followed by a pine phase during the interglacial and each of the three interstadials. The further development of the interglacial vegetation proceeded with a phase when deciduous trees (mainly Quercus, oak) and hazel (Corylus) dominated, though spruce (Picea) was present at the same time in the area. A phase with abundant yew (Taxus) led to an apparently long lasting period with dominant spruce and fir (Abies) accompanied by some hornbeam (Carpinus). The vegetational development shows the main characteristics of the Riss/Würm interglacial, though certain differences in the vegetational development in the northern alpine foreland are obvious. These differences may result from the existence of an altitudinal zonation of the vegetation in the vicinity of the site and are the expression of its position at the border of the Alps. A greater age (e.g. the Holsteinian) can be excluded by reason of the vegetational development, and is also not indicated at first sight from the geological and stratigraphical data of the site. Characteristic of the Riss/Würm vegetational development in southern Germany - at least in the region between Lake Starnberg/Samerberg/Salzach - is the conspicuous yew phase. According to absolute pollen counts, yew not only displaced the deciduous species, but also displaced spruce preferentially, thus indicating climatic conditions less favourable for spruce, caused by mild winters (Ilex spreading!) and by short-term low precipitation, indicated by the reduced sedimentation rate. The oldest interstadials is bipartite, as due to the climatic deterioration the early vegetational development, culminating in a spruce phase, had been interrupted by another expansion of pine. A younger spruce-dominated period with fir and perhaps also with hornbeam and beech (Fagus) followed. An identical climatic development has been reported from other European sites with long pollen sequences (see chapter 6.7). However, different tree species are found in the same time intervals in Middle Europe during Early Würm times. Sediments of the last interglacial (Eem or Riss/Würm) have been found in all cases below the sediments of the bipartite interstadial, and in addition one more interstadial occurs in the overlying sediments. This proves that Eem and Riss/Würm of the north-european plain resp. of the alpine foreland are contemporaneous interglacials although this has been questioned by some authors. The climax vegetation of the second interstadial was a spruce forest without fir and without more demanding deciduous tree species. The vegetational development of the third interstadial is recorded fragmentary only. But it has been established that a spruce forest was present. The oldest interstadial must correspond to the danish Brørup interstadial as it is expressed in northern Germany, the second one to the Odderade interstadial. A third Early Würm interstadial, preserved fragmentarily at Samerberg, is known from other sites. The dutch Amersfoort interstadial most likely is the equivalent to the older part of the bipartite danish Brørup interstadial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(expanded by Eberhard Grüger, Göttingen) The site "Höllerer See" is a lake in the northern foreland of the Alps, about 30 km north of the city of Salzburg/Austria, situated in the south-western part of Oberösterreich/Austria. A 2 m long piston core from this locality, consisting entirely of calcareous gyttja, was studied by pollen analysis. The three lowermost samples (1.98, 1.95 and 1.92 m) were deposited during the Preboreal when Pinus and Betula were still the dominating forest trees. High pollen values of thermophilous woody species (mainly Corylus and Quercus, but also Ulmus, Tilia, Fraxinus) prove the Boreal age of the next younger sample (1.91 m). The following two pollen spectra attest that Alnus (1.89 m) and - later (1.88 m) - Fagus had become important members of the local (Alnus) and the regional (Fagus) vegetation. From this level up to the top of the profile these two tree taxa contribute - together with Betula - always 50 to 80 % to the arboreal pollen sum. The upper 1.89 m of sediment of the Höllerer See core evidently date from the Subboreal and the Subatlantic. As Preboreal sediment was stated at the base of the profile it must be concluded that most of the Boreal and the Atlantic is - for whatever reason - not represented by sediment in this core. As no radiocarbon dates are available age estimates of the distinguished pollen zones can be achieved only by correlating major changes of the former vegetation with historical events which probably influenced the then contemporary vegetation. The pollen grains of the Triticum and Hordeum type found in samples of zone 2.1 might indicate the growing of cereals in the region during the Late Bronze Age. The first pollen grains of Secale date from the boundary Hallstatt/Latène Age (zone 2.2). The cereal curves become continuous in Bavarian times (Bajuwarenzeit, Middle Ages, zone 3.3). The Plantago laceolata curve, continuous since 1.7 m depth (zone 2.1), points to animal breeding since the Early Subatlantic (Hallstattzeit). This curve reaches its absolute maximum in Roman time (zone 3.1). Roman time forest clearance caused a drastic decrease of tree pollen curves (start of zone 3.1). Values of anthropogenic indicators as high as in zone 3.1 are found again - after a distinct decrease in zone 3.2 - not till the Bavarians settled in the region (6th century). Maximal Fagus values and the simultaneous total lack of anthropogenic indicators mark the Migration Period (zone 3.2). The Younger Subatlantic (zone 4) is characterized by a decrease of deciduous forests due to medieval forest clearance. At the same time the conifers Pinus and Picea gained in importance. The lake was probably used for retting hemp in Medieval times. The distinction of the pollen grains of Cannabis and Humulus might not be certain in all cases. It is known that hemp as well as hop was cultivated in the study area. Markers were added to the samples at the beginning of pollen preparation (13500 Lycopodium spores, sample volume 0.5 cm**3) and counted together with the pollen grains. Therefore pollen concentrations can be calculated: Concentration = C * F / V (with C = number of grains of a particular pollen type, V = volume of the untreated pollen sample, F = marker added/marker counted). F ranges from 39 to 1688. Factors that large are not suited to produce reliably interpretable pollen concentrations. Consequently no use was made of the pollen concentrations in this thesis, although a concentration diagram is added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.