11 resultados para Fertilization and nutrition of annual crops
em Publishing Network for Geoscientific
Resumo:
Nutrition of 6 deep-sea ophiuroid species of the genus Amphiophiura in the Pacific and Indian Oceans has been studied. One species is a detritus-feeder while the others are carnivorous. All 6 are widespread in deep-sea eutrophic regions of both oceans. Carnivorous species are also necrophagous, feeding on dead fish, surface pteropods, and crustaceans. Fishes are consumed mainly in the Indian Ocean, pteropods in the Pacific. Thus, as shown by carnivorous Amphtophiura, the rain of dead surface pelagic organisms is one of the most important sources of food for a number of deep-sea bottom-dwelling invertebrates.
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.
Resumo:
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59-80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219-236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day**-1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.
Resumo:
Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.
Resumo:
Long-term ecological data are essential for conservation and to monitor and evaluate the effects of environmental change. Bird populations have been routinely assessed on islands off the British coast for many years and here long term data for one such island, Skokholm, is evaluated for robustness in the light of some 20 changes in observers (wardens) on the island over nearly eight decades. It was found that the dataset was robust when compared to bootstrap data with no species showing significant changes in abundance in years when wardens changed. It is concluded that the breeding bird populations on Skokholm and other British offshore islands are an important scientific resource and that protocols should be enacted to ensure the archiving of records, the continuance of data collection using standardised protocols into the future, and the recognition of such long-term data for science in terms of an appropriate conservation designation.
Resumo:
The results of the International Permafrost Association's International Polar Year Thermal State of Permafrost (TSP) project are presented based on field measurements from Russia during the IPY years (2007-09) and collected historical data. Most ground temperatures measured in existing and new boreholes show a substantial warming during the last 20 to 30 years. The magnitude of the warming varied with location, but was typically from 0.5°C to 2°C at the depth of zero annual amplitude. Thawing of Little Ice Age permafrost is ongoing at many locations. There are some indications that the late Holocene permafrost has begun to thaw at some undisturbed locations in northeastern Europe and northwest Siberia. Thawing of permafrost is most noticeable within the discontinuous permafrost domain. However, permafrost in Russia is also starting to thaw at some limited locations in the continuous permafrost zone. As a result, a northward displacement of the boundary between continuous and discontinuous permafrost zones was observed. This data set will serve as a baseline against which to measure changes of near-surface permafrost temperatures and permafrost boundaries, to validate climate model scenarios, and for temperature reanalysis.