596 resultados para Feo-zno-(cao sio2) System

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There has been much recent interest in the origin of silicic magmas at spreading centres away from any possible influence of continental crust. Here we present major and trace element data for 29 glasses (and 55 whole-rocks) sampled from a 40 km segment of the South East Rift in the Manus Basin that span the full compositional continuum from basalt to rhyolite (50-75 wt % SiO2). The glass data are accompanied by Sr-Nd-Pb, O and U-Th-Ra isotope data for selected samples. These overlap the ranges for published data from this part of the Manus Basin. Limited increases in Cl/K ratios with increasing SiO2, La-SiO2 and Yb-SiO2 relationships, and the oxygen isotope data rule out models in which the more silicic lavas result from partial melting of altered oceanic crust or altered oceanic gabbros. Rather, the data form a coherent array that is suggestive of closed-system fractional crystallization and this is well simulated by MELTS models run at 0.2 GPa and QFM (quartz-fayalite-magnetite buffer) with 1 wt % H2O, using a parental magma chosen from the basaltic glasses. Although some assimilation of altered oceanic crust or gabbro cannot be completely ruled out, there is no evidence that this plays an important role in the origin of the silicic lavas. The U-series disequilibria are dominated by 238U and 226Ra excesses that limit the timescale of differentiation to less than a few millennia. Overall, the data point to rapid evolution in relatively small magma lenses located near the base of thick oceanic crust; we speculate that this was coupled with relatively low rates of basaltic recharge. A similar model may be applicable to the generation of silicic magmas elsewhere in the ocean basins.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thirty-nine medium and fine grained sandstones from between 19,26 and 147,23 mbsf in the Cape Roberts-l core (CRP-1) were analysed for 10 major and 16 trace elements. Using whole-lock compositions, 9 samples were selected for analyses of mineral and glass grains by energy dispersive electron microscope. Laser-Ablation Mass-Spectrometry was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to examine their contribution to the bulk rock chemistry. Geochemical data reveal the major contribution played by the Granite Harbour Intrusives to the whole rock composition, even if a significant input is supplied by McMurdo volcanics and Ferrar dolerite pyroxenes McMurdo volcanics were studied in detail; they appeal to derive from a variety of litologies, and a dominant role of wind transpoitation from exposures of volcanic rocks may be inferred from the contemporary occurrence of different compositions at all depths. Only at 116.55 mbsf was a thin layer of tephra found, linked to an explosive eruption McMurdo volcanic rocks exhibit larger abundances at depths above 62 mbsf, in correspondence with the onset of volcanic activity in the McMurdo Sound area. From 62 mbsf to the bottom of the core, McMurdo volcanics are less abundant and probably issued from some centres in the McMurdo Sound region. However, available data do not allow the exclusion of wind transport from some eruptive centres active in north Victoria Land at the beginning of the Miocene Epoch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sixty-four volcanic chists, sandstones and tephras between 5.95 and 618.19 meters below sea floor (mbsf) in the Cape Roberts Project cores 2 and 2A cores (CRP-2/2A) were examined for Cenozoic and Mesozoic volcanic components, using optical and Scanning Electron Microscopy. Minerals and glass shards in a selection of samples were analysed by electron microprobe fined with an EDAX detector. Laser-Ablation ICP-Mass-Spectrometry (ICP-MS) was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to pin-point the onset of McMurdo Volcanic Group (MVG) activity in the stratigraphic column. Pumices in tephra layers of peralkaline phonolite composition in Unit 7.2 -between 108 and 114 mbsf - were also analysed for trace elements by ICP-MS. This tephra unit is not reworked and its isotopic age (21.44 ± 0.05 Ma) is the age of deposition. The height of the eruptive column responsible for the deposition of the tephra was probably less than 8 km; the source was local, probably within 30 km from the drill site. Phonolite of unit 7.2 of CRP-2/2A has no direct petrogenetic relation with the peralkaline trachyte in the tephra-enriched layer of CRP-1 at 116.55 mbsf. Volcanic clasts and sand grains (glass shards, aegirine-augite, anorthoclase) related to Cenozoic activity of MVG were observed only starting from Unit 9.8, where they are dated at 24.22 ± 0.06 Ma at c. 280 mbsf. In this unit the lowest- occurring basaltic glass shard is found at 297.54 mbsf. Sampled McMurdo volcanics are generally vesicular and vary in composition from alkali basalt to trachyte and peralkaline phonolite. By contrast, below 320 mbsf, aphyric or slightly-porphyritic volcanic clasts become more abundant but they are all non-vesiculated, pigeconite and ilmenite-bearing basalts and dolerite of tholeiitic affinity. These rocks are considered to be related to lava flows and associated intrusions of Jurassic age (Kirkpatrick basalts and Ferrar dolerite). As in CRP-1, McMurdo volcanics appear to derive from a variety of lithologics. Besides glaciers, a dominant role of wind transportation from exposed volcanic rocks may be inferred from the contemporary occurrence of glass shards of different compositions at depths above 297.54 mbsf. These data confirm that the onset of magmatic activity in southern Victoria Land is considerably delayed (by about 24 Ma) with respect to northern Victoria Land.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PS2644 deep-sea core sequence, retrieved from the northwestern margin of Iceland and covering the last 86 ka, exhibits high sedimentation rates during the last glacial cycle that allow the clear distinction of Greenland stadial (GS)/ interstadial (GI) cycles in the various proxy records. Abundance records of rhyolitic, basaltic and tachylytic tephra grains reveal several maxima. Tephra grains of all types were geochemically analyzed in 44 levels. A total of 92 tephras with a distinctive character have been defined within the glacial sequence of gravity core PS2644-5, whereas the Holocene record is dominated by reworked Vedde Ash grains and not suitable for tephra stratigraphic work. Of the 92 tephras only 19 geochemical populations have been linked with confidence to previously defined tephras such as from the Vedde Ash, Faeroe Marine Ash Zones (FMAZ) II and III and North Atlantic Ash Zone (NAAZ) II. For the glacial period informal names were given to 78 new tephras, most of which are basaltic tephras. Several of these layers have a unique geochemical character and might become new chronostratigraphic markers in the North Atlantic region. Linking the tephra populations to the volcanic system producing them, respectively, revealed that Icelandic eruptions dominate with 83 tephra geochemical populations and Jan Mayen with 9. Around 48% of the informal tephra layers linked to the Icelandic volcanic province are produced from either the Grimsvötn or the Veidivötn-Bardarbunga volcanic systems. The intervals spanning from Greenland Stadial (GS) 3 to Greenland Interstadial (GI) 4 (24.5-29 ka BP), from GI 8 to GS 10 (36.9-40.5 ka BP) and from GI 14 to GI 15.2 (50-56 ka BP) are the periods with the highest number of eruptions, all of which are associated with known tephra zones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concretions of iron and manganese oxides and hydrous oxidesóobjects commonly called manganese nodulesóare widely distributed not only on the deep-sea floor but also in shallow marine environments1. Such concretions were not known to occur north of Cape Mendocino in the shallow water zones bordering the North-East Pacific Ocean until the summer of 1966 when they were recovered by one of us (J. W. M.) in dredge samples from Jervis Inlet, a fjord approximately 50 miles north-west of Vancouver, British Columbia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distribution patterns and petrographical and mineral chemistry data are described for the most representative basement lithologies occuring as clast in the c. 824 m thick Tertiary sedimentary sequence at the CRP-3 drillsite. These are granule to bolder grain size clasts of igneous and metamorphic rocks. Within the basement clast assemblage, granitoid pebbles are the predominant lithology. They consist of dominant grey biotic-bearing monzogranite, pink biotite-hornblende monzogranite, and biotite-bearing leucomomonzgranite. Minor lithologies include: actinolite-bearing leucotonalite, microgranite, biotite-hornblende quartz-monzonitic porphyr, and foliated biotic leucomonzogranite. Metamorphic clasts include rocks of both granitic and sedimentary derivation. They include mylonitic biotic orthogneiss, with or without garnet, muscovite-bearing quartzite, sillimanite-biotite paragneiss, biotite meta-sandstone, biotite-spotted schist, biotite-clacite-clinoamphibole meta-feldspathic arenite, biotite-calcite-clinozoisite meta-siltstone, biotite±clinoamphibole meta-marl, and graphite-bearing marble. As in previous CRP drillcores, the ubiquitous occurence of biotite±hornblende monzogranite pebbles is indicative of a local provenance, closely mirroring the dominance of these lithologies in the on-shore basement, where the Cambro-Ordovician Granite Harbour Intrusive Complex forms the most extensively exposed rock unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyze a ~4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemistical, geochronological, micropaleontological (ostracoda, testate amoeba) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for Central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP, which drained catastrophically in spring 2005. The present study emphasizes that Arctic lake systems and periglacial landscapes are highly dynamic and permafrost formation as well as degradation in Central Beringia was controlled by regional to global climate patterns and as well as by local disturbances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Basement lavas from Sites 756, 757, and 758 on Ninetyeast Ridge are tholeiitic basalts. Lavas from Sites 756 and 757 appear to be subaerial eruptives, but the lowermost flows from Hole 758A are pillow lavas. In contrast to the compositional variation during the waning stages of Hawaiian volcanism, no alkalic lavas have been recovered from Ninetyeast Ridge and highly evolved lavas were recovered from only one of seven drill sites (DSDP Site 214). All lavas from Site 758 have relatively high MgO contents (8-10 wt%), and they are less evolved than lavas from Sites 756 and 757. Although abundances of alkali metals in these Ninetyeast Ridge basalts were significantly modified by postmagmatic alteration, abundances of other elements reflect magmatic processes. At Site 757 most of the lavas are Plagioclase cumulates, but lava compositions require two compositionally distinct, AhCb-rich parental magmas, perhaps segregated at relatively low mantle pressures. In addition, at both Sites 756 and 758 more than one compositionally distinct parental magma is required. The compositions of these Ninetyeast Ridge lavas, especially those from Site 758, require a source component with a depleted composition; specifically, the abundance ratios Th/Ta, Th/La, Ba/Nb, Ba/La, and La/Ce in these lavas are generally less than the ratios inferred for primitive mantle. Lavas from Ninetyeast Ridge and the Kerguelen Archipelago have very different chondrite-normalized REE patterns, with lower light REE/heavy REE (LREE/HREE) ratios in lavas from Ninetyeast Ridge. However, lavas from Sites 757 and 758 have Pb isotope ratios that overlap with the field defined by lavas from the Kerguelen Archipelago (Weis and Frey, this volume). Therefore, these Ninetyeast Ridge lavas contain more of a component that is relatively depleted in LREE and other highly incompatible elements, but have similar amounts of the component that controls radiogenic Pb isotopes. A model involving mixing between components related to a depleted source and an enriched plume source has been proposed for the oldest Kerguelen Archipelago basalts and Ninetyeast Ridge lavas. Although the incompatible element characteristics of the Ninetyeast Ridge lavas are intermediate between depleted MORB and Kerguelen Archipelago basalts, these data are not consistent with a simple two-component mixing process. A more complex model is required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In-situ Fe isotope measurements have been carried out to estimate the impact of the hydrothermal metamorphic overprint on the Fe isotopic composition of Fe-Ti-oxides and Fe-sulfides of the different lithologies of the drilled rocks from IODP Hole 1256D (eastern equatorial Pacific; 15 Ma crust formed at the East Pacific Rise). Most igneous rocks normally have a very restricted range in their 56Fe/54Fe ratio. In contrast, Fe isotope compositions of hot fluids (> 300 °C) from mid-ocean-ridge spreading centers define a narrow range that is shifted to lower delta 56Fe values by 0.2 per mil - 0.5 per mil as compared to igneous rocks. Therefore, it is expected that mineral phases that contain large amounts of Fe are especially affected by the interaction with a fluid that fractionates Fe isotopes during exsolution/precipitation of those minerals. We have used a femtosecond UV-Laser ablation system to determine mineral 56Fe/54Fe ratios of selected samples with a precision of < 0.1 per mil (2 sigma level) at micrometer-scale. We have found significant variations of the delta 56Fe (IRMM-014) values in the minerals between different samples as well as within samples and mineral grains. The overall observed scale of delta 56Fe (magnetite) in 1256D rocks ranges from - 0.12 to + 0.64 per mil, and of delta 56Fe (ilmenite) from - 0.77 to + 0.01 per mil. Pyrite in the lowermost sheeted dike section is clearly distinguishable from the other investigated lithological units, having positive delta 56Fe values between + 0.29 and + 0.56 per mil, whereas pyrite in the other samples has generally negative delta 56Fe values from - 1.10 to - 0.59 permil. One key observation is that the temperature dependent inter-mineral fractionations of Fe isotopes between magnetite and ilmenite are systematically shifted towards higher values when compared to theoretically expected values, while synthesized, well equilibrated magnetite-ilmenite pairs are compatible with the theoretical predictions. Theoretical considerations including beta-factors of different aqueous Fe-chlorides and Rayleigh-type fractionations in the presence of a hydrous, chlorine-bearing fluid can explain this observation. The disagreement between observed and theoretical equilibrium fractionation, the fact that magnetite, in contrast to ilmenite shows a slight downhole trend in the delta 56Fe values, and the observation of small scale heterogeneities within single mineral grains imply that a general re-equilibration of the magnetite-ilmenite pairs is overprinted by kinetic fractionation effects, caused by the interaction of magnetite/ilmenite with hydrothermal fluids penetrating the upper oceanic crust during cooling, or incomplete re-equilibration at low temperatures. Furthermore, the observation of significant small-scale variations in the 56Fe/54Fe ratios of single minerals in this study highlights the importance of high spatial-resolution-analyses of stable isotope ratios for further investigations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At Ocean Drilling Program Site 1256 (6°44.2'N, 91°56.1'W), during Leg 206, a thick massive unit was cored in two neighboring penetrations of the uppermost basement, Holes 1256C and 1256D. This thick massive lava flow, commonly referred to as the "Lava Pond," is identified as Unit 18 (>30 m thick) in Hole 1256C and Unit 1 (>74.2 m thick) in Hole 1256D (Wilson et al., 2003, doi:10.2973/odp.proc.ir.206.2003). In the coarse-grained basalt that comprises this lithological unit, low-temperature "background" alteration events are present. This report provides microprobe analyses of both primary and secondary minerals present in this massive lava pond. The analyses of typically magmatic minerals (titanomagnetite, plagioclase, and clinopyroxene) are given for comparison with secondary minerals.