21 resultados para Fanny Munró
em Publishing Network for Geoscientific
Resumo:
In the current context of environmental change, ocean acidification is predicted to affect the cellular processes, physiology and behaviour of all marine organisms, impacting survival, growth and reproduction. In relation to thermal tolerance limits, the effects of elevated pCO2 could be expected to be more pronounced at the upper limits of the thermal tolerance window. Our study focused on Crepidula fornicata, an invasive gastropod which colonized shallow waters around European coasts during the 20th century. We investigated the effects of 10 weeks' exposure to current (380 µatm) and elevated (550, 750, 1,000 µatm) pCO2 on this engineer species using an acute temperature increase (1 °C/12 h) as the test. Respiration rates were measured on both males (small individuals) and females (large individuals). Mortality increased suddenly from 34 °C, particularly in females. Respiration rate in C. fornicata increased linearly with temperature between 18 and 34 °C, but no differences were detected between the different pCO2 conditions either in the regressions between respiration rate and temperature or in Q10 values. In the same way, condition indices were similar in all the pCO2 treatments at the end of the experiment, but decreased from the beginning of the experiment. This species was highly resistant to acute exposure to high temperature regardless of pCO2 levels, even though food was limited during the experiment. Crepidula fornicata appears to have either developed resistance mechanisms or a strong phenotypic plasticity to deal with fluctuations of physicochemical parameters in its habitat. This suggests that invasive species may be more resistant to future environmental changes than its native competitors.
Resumo:
Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free-living coralline alga Lithothamnion corallioides ("maerl") and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 µatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 µatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 µatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.
Resumo:
Coralline algae are major calcifiers of significant ecological importance in marine habitats but are among the most sensitive calcifying organisms to ocean acidification. The elevated pCO2 effects were examined in three coralline algal species living in contrasting habitats from intertidal to subtidal zones on the north-western coast of Brittany, France: (i) Corallina elongata, a branched alga found in tidal rock pools, (ii) Lithophyllum incrustans, a crustose coralline alga from the low intertidal zone, and (iii) Lithothamnion corallioides (maerl), a free-living form inhabiting the subtidal zone. Metabolic rates were assessed on specimens grown for one month at varying pCO2: 380 (current pCO2), 550, 750 and 1000 µatm (elevated pCO2). There was no pCO2 effect on gross production in C. elongata and L. incrustans but L. incrustans respiration strongly increased with elevated pCO2. L. corallioides gross production slightly increased at 1000 µatm, while respiration remained unaffected. Calcification rates decreased with pCO2 in L. incrustans (both in the light and dark) and L. corallioides (only in the light), while C. elongata calcification was unaffected. This was consistent with the lower skeletal mMg/Ca ratio of C. elongata (0.17) relative to the two other species (0.20). L. incrustans had a higher occurrence of bleaching that increased with increasing pCO2. pCO2 could indirectly impact this coralline species physiology making them more sensitive to other stresses such as diseases or pathogens. These results underlined that the physiological response of coralline algae to near-future ocean acidification is species-specific and that species experiencing naturally strong pH variations were not necessarily more resistant to elevated pCO2 than species from more stable environment.
Resumo:
Many studies have investigated the effect of an increase in pCO2 on coral calcification and photosynthesis but the physiological consequences are still relatively speculative. We investigated the effects of ocean acidification on zinc incorporation and gross calcification in the scleractinian coral Stylophora pistillata. Zn is an essential element for health and growth of corals. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) during 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates of this element. After 5 weeks, 65Zn activity measured in the whole coral and in the two compartments: tissue and skeleton, differed significantly between pH conditions with concentration factors higher at pHT 8.1, compared to lower pH. Zn is therefore taken less efficiently by corals at reduced pH. Their gross calcification, as measured by 45Ca incorporation, photosynthesis and photosynthetic efficiency did not change with pH even at the lowest level.
Resumo:
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 µatm) and at elevated levels (750 and 1400 µatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 µatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 µatm and 1400 µatm pCO2, respectively, than at 390 µatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Resumo:
Organisms inhabiting coastal waters naturally experience diel and seasonal physico-chemical variations. According to various assumptions, coastal species are either considered to be highly tolerant to environmental changes or, conversely, living at the thresholds of their physiological performance. Therefore, these species are either more resistant or more sensitive, respectively, to ocean acidification and warming. Here, we focused on Crepidula fornicata, an invasive gastropod that colonized bays and estuaries on northwestern European coasts during the 20th century. Small (<3 cm in length) and large (>4.5 cm in length), sexually mature individuals of C. fornicata were raised for 6 months in three different pCO2 conditions (390 µatm, 750 µatm, and 1400 µatm) at four successive temperature levels (10°C, 13°C, 16°C, and 19°C). At each temperature level and in each pCO2 condition, we assessed the physiological rates of respiration, ammonia excretion, filtration and calcification on small and large individuals. Results show that, in general, temperature positively influenced respiration, excretion and filtration rates in both small and large individuals. Conversely, increasing pCO2 negatively affected calcification rates, leading to net dissolution in the most drastic pCO2 condition (1400 µatm) but did not affect the other physiological rates. Overall, our results indicate that C. fornicata can tolerate ocean acidification, particularly in the intermediate pCO2 scenario. Moreover, in this eurythermal species, moderate warming may play a buffering role in the future responses of organisms to ocean acidification.
Resumo:
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT(8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT(7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.
Resumo:
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 µatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 µatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 µatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 µatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.