29 resultados para Environmental impact analysis--Delaware Water Gap National Recreation Area (N.J. and Pa.)--Maps.
em Publishing Network for Geoscientific
Resumo:
During the international "Overflow-Expedition'' 1973 on R.V. "Meteor" oxygen concentrations in surface layers were measured in order to determine the oxygen gradients within the first two meters and to add some informations to the mechanisms of oxygen exchange at the air-sea interface. These investigations may be interesting also with regard to longterm- observations of the oxygen distribution in the Atlantic, especially the problem of the A.O.U. (apparent oxygen utilization) determination. To measure oxygen gradients a special sampler was built which is able to take water samples each 20 cm of the first 2 meters. These data were supplemented by further samples down to 150 m, taken by conventional water samplers, from which samples were also taken to measure N2/O2-relations. By comparing these relations with theoretical relations in air-saturated water the influence of biological production and consumption on the oxygen contents in water could be estimated. A simple glass apparatus was built to extract gas from the water samples, and hereafter the N2/O2-relations were determined by mass spectrometry. Most distributions of the oxygen anomaly show a negative oxygen balance which varies largely, probably due to strong mixing processes in the Iceland-Faroe ridge area. The distribution of surface oxygen saturation values are of two different types. The values of the stations 260, 262 and 270 stem from mixed water and show homogeneous supersaturations, as can be found instantly when whitecaps appear. The values of 9 other stations are from water, sampled during calm periods which has been mixed and supersaturated before. They show a decreasing oxygen saturation towards the sea surface and often undersaturation in the upper decimeters up to 98 % and even 91 %. So at the air-sea interface even less initial oxygen saturation than 100 % can be found after supersaturation during heavy weather periods.
Resumo:
Public participation is an integral part of Environmental Impact Assessment (EIA), and as such, has been incorporated into regulatory norms. Assessment of the effectiveness of public participation has remained elusive however. This is partly due to the difficulty in identifying appropriate effectiveness criteria. This research uses Q methodology to discover and analyze stakeholder's social perspectives of the effectiveness of EIAs in the Western Cape, South Africa. It considers two case studies (Main Road and Saldanha Bay EIAs) for contextual participant perspectives of the effectiveness based on their experience. It further considers the more general opinion of provincial consent regulator staff at the Department of Environmental Affairs and the Department of Planning (DEA&DP). Two main themes of investigation are drawn from the South African National Environmental Management Act imperative for effectiveness: firstly, the participation procedure, and secondly, the stakeholder capabilities necessary for effective participation. Four theoretical frameworks drawn from planning, politics and EIA theory are adapted to public participation and used to triangulate the analysis and discussion of the revealed social perspectives. They consider citizen power in deliberation, Habermas' preconditions for the Ideal Speech Situation (ISS), a Foucauldian perspective of knowledge, power and politics, and a Capabilities Approach to public participation effectiveness. The empirical evidence from this research shows that the capacity and contextual constraints faced by participants demand the legislative imperatives for effective participation set out in the NEMA. The implementation of effective public participation has been shown to be a complex, dynamic and sometimes nebulous practice. The functional level of participant understanding of the process was found to be significantly wide-ranging with consequences of unequal and dissatisfied stakeholder engagements. Furthermore, the considerable variance of stakeholder capabilities in the South African social context, resulted in inequalities in deliberation. The social perspectives revealed significant differences in participant experience in terms of citizen power in deliberation. The ISS preconditions are highly contested in both the Saldanha EIA case study and the DEA&DP social perspectives. Only one Main Road EIA case study social perspective considered Foucault's notion of governmentality as a reality in EIA public participation. The freedom of control of ones environment, based on a Capabilities approach, is a highly contested notion. Although agreed with in principle, all of the social perspectives indicate that contextual and capacity realities constrain its realisation. This research has shown that Q method can be applied to EIA public participation in South Africa and, with the appropriate research or monitoring applications it could serve as a useful feedback tool to inform best practice public participation.
Resumo:
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.
Resumo:
A series of long-chain (C37, C38, C39), primarily di and tri-unsaturated methyl and ethyl ketones, first identified in sediments from Walvis Ridge off West Africa and from Black Sea (de Leeuw et al., 1979), has been found in marine sediments throughout the world (Brassell et al., 1986 doi:10.1038/320129a0). The marine coccolithophorid Emiliania huxleyi and members of the class Prymnesiophyceae are now the recognized sources of these compounds (Volkman et al., 1979; Marlowe, et al., 1984). Experiments with laboratory cultures of algae showed the degree of unsaturation in the ketone seris biosynthesized depends on growth temperature (Brassell et al., 1986; Marlowe, 1984), a physiological respons observed for classical membrane lipids (vanDeenen et al., 1972). Brassell and co-workers (Brassell et al., 198; Brassell et al., 1986b) thus proposed that systematic fluctuations in the unsaturation of these alkenones noted down-core in sediments from the Kane Gap region of the north-east tropical Atlantic Ocean and correlated with glacial-interglacial cycles provide an organic geochemical measure of past sea-surface water temperatures. Using laboratory cultures of E. huxleyi, we have calibrated changes in the unsaturation pattern of the long-chain ketone series versus growth temperature. The calibration curve is linear and accurtely predicts unsuturation patterns observed in natural particulate materials collected from oceanic waters of known temperature. We present evidence supporting the proposed paleotemperature hypothesis (Brassell et al., 1986, Brassel et al., 1986b) and suggesting absolute 'sea-surface temperatures' for a given oceanic location can be estimated from an analysis of long-chain ketone compositions preserved in glacial and interglacial horizons of deep-sea sediment cores.
Resumo:
Phosphorus cycling in the ocean is influenced by biological and geochemical processes that are reflected in the oxygen isotope signature of dissolved inorganic phosphate (Pi). Extending the Pi oxygen isotope record from the water column into the seabed is difficult due to low Pi concentrations and small amounts of marine porewaters available for analysis. We obtained porewater profiles of Pi oxygen isotopes using a refined protocol based on the original micro-extraction designed by Colman (2002). This refined and customized method allows the conversion of ultra-low quantities (0.5 - 1 µmol) of porewater Pi to silver phosphate (Ag3PO4) for routine analysis by mass spectrometry. A combination of magnesium hydroxide co-precipitation with ion exchange resin treatment steps is used to remove dissolved organic matter, anions, and cations from the sample before precipitating Ag3PO4. Samples as low as 200 µg were analyzed in a continuous flow isotope ratio mass spectrometer setup. Tests with external and laboratory internal standards validated the preservation of the original phosphate oxygen isotope signature (d18OP) during micro extraction. Porewater data on d18OP has been obtained from two sediment cores of the Moroccan margin. The d18OP values are in a range of +19.49 to +27.30 per mill. We apply a simple isotope mass balance model to disentangle processes contributing to benthic P cycling and find evidence for Pi regeneration outbalancing microbial demand in the upper sediment layers. This highlights the great potential of using d18OP to study microbial processes in the subseafloor and at the sediment water interface.
Resumo:
Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO2. At ambient conditions, calcification rates ranged between -0.01 and 0.23% d-1. Calcification rates of M. oculata under variable partial pressure of CO2 (pCO2) were the same for ambient and elevated pCO2 (404 and 867 µatm) with 0.06 ± 0.06% d-1, while calcification was 0.12 ± 0.06% d-1 when pCO2 was reduced to its pre-industrial level (285 µatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.
Resumo:
Two water samples and two sediment samples taken in 1965 by the R. V. "Meteor" in the area of the hot salt brine of the Atlantis II-Deep were chemically investigated, and in addition the sediment samples were subjected to X-ray and optical analysis. The investigation of the sulfur-isotope-ratios showed the same values for all water samples. This information combined with the Ca-sulfate solubility data leads us to conclude that, for the most part, the sulfate content of the salt brine resulted from mixing along the boundary with the normal seawater. In this boundary area gypsum or anhydrite is formed which sinks down to the deeper layers of the salt brine where it is redisolved when the water becomes undersaturated. In the laboratory, formation of CaS04 precipitate resulted from both the reheating of the water sample from the uppermost zone of the salt brine to the in-situ-temperature as well as by the mixing of the water sample with normal Red Sea water. The iron and manganese delivered by the hot spring is separated within the area of the salt brine by their different redox-potentials. Iron is sedimented to a high amount within the salt brine, while, as evidenced by its small amounts in all sediment samples, the more easily reducible manganese is apparently carried out of the area before sedimentation can take place. The very good layering of the salt brine may be the result of the rough bottom topography with its several progressively higher levels allowing step-like enlargements of the surface areas of each successive layer. Each enlargement results in larger boundary areas along which more effective heat transfer and mixing with the next layer is possible. In the sediment samples up to 37.18% Fe is found, mostly bound as very poorly crystallized iron hydroxide. Pyrite is present in only very small amounts. We assume that the copper is bound mostly as sulfide, while the zinc is most likely present in an other form. The sulfur-isotope-investigations indicate that the sulfur in the sediment, bound as pyrite and sulfides, is not a result of bacterical sulfate-reduction in the iron-rich mud of the Atlantis II-Deep, but must have been brought up with the hot brine.