25 resultados para Entire functions in the Laguerre-P
em Publishing Network for Geoscientific
Resumo:
The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.
Resumo:
Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.
Resumo:
Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
Resumo:
Palynological analyses were performed on 53 surface sediment samples from the North Pacific Ocean, including the Bering and Okhotsk Seas (37-64°N, 144°E-148°W), in order to document the relationships between the dinocyst distribution and sea-surface conditions (temperatures, salinities, primary productivity and sea-ice cover). Samples are characterized by concentrations ranging from 18 to 143816 cysts/cm**3 and the occurrence of 32 species. A canonical correspondence analysis (CCA) was carried out to determine the relationship between environmental variables and the distribution of dinocyst taxa. The first and second axes represent, respectively, 47% and 17.8% of the canonical variance. Axis 1 is positively correlated with all parameters except to the sea-ice and primary productivity in August, which are on the negative side. Results indicate that the composition of dinocyst assemblages is mostly controlled by temperature and that all environmental variables are correlated together. The CCA distinguishes 3 groups of dinocysts: the heterotrophic taxa, the genera Impagidinium and Spiniferites as well as the cyst of Pentapharsodinium dalei and Operculodinium centrocarpum. Five assemblage zones can be distinguished: 1) the Okhotsk Sea zone, which is associated to temperate and eutrophic conditions, seasonal upwellings and Amur River discharges. It is characterized by the dominance of O. centrocarpum, Brigantedinium spp. and Islandinium minutum; 2) the Western Subarctic Gyre zone with subpolar and mesotrophic conditions due to the Kamchatka Current and Alaska Stream inflows. Assemblages are dominated by Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Brigantedinium spp.; 3) the Bering Sea zone, depicting a subpolar environment, influenced by seasonal upwellings and inputs from the Anadyr and Yukon Rivers. It is characterized by the dominance of I. minutum and Brigantedinium spp.; 4) the Alaska Gyre zone with temperate conditions and nutrient-enriched surface waters, which is dominated by N. labyrinthus and Brigantedinium spp. and 5) the Kuroshio Extension-North Pacific-Subarctic Current zone characterized by a subtropical and oligotrophic environment, which is dominated by O. centrocarpum, N. labyrinthus and warm taxa of the genus Impagidinium. Transfer functions were tested using the modern analog technique (MAT) on the North Pacific Ocean (= 359 sites) and the entire Northern Hemisphere databases ( = 1419 sites). Results confirm that the updated Northern Hemisphere database is suitable for further paleoenvironmental reconstructions, and the best results are obtained for temperatures with an accuracy of +/-1.7 °C.
Resumo:
The drift of 52 icebergs tagged with GPS buoys in the Weddell Sea since 1999 has been investigated with respect to prevalent drift tracks, sea ice/iceberg interaction, and freshwater fluxes. Buoys were deployed on small- to medium-sized icebergs (edge lengths ? 5 km) in the southwestern and eastern Weddell Sea. The basin-scale iceberg drift of this size class was established. In the western Weddell Sea, icebergs followed a northward course with little deviation and mean daily drift rates up to 9.5 ± 7.3 km/d. To the west of 40°W the drift of iceberg and sea ice was coherent. In the highly consolidated perennial sea ice cover of 95% the sea ice exerted a steering influence on the icebergs and was thus responsible for the coherence of the drift tracks. The northward drift of buoys to the east of 40°W was interrupted by large deviations due to the passage of low-pressure systems. Mean daily drift rates in this area were 11.5 ± 7.2 km/d. A lower threshold of 86% sea ice concentration for coherent sea ice/iceberg movement was determined by examining the sea ice concentration derived from Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) satellite data. The length scale of coherent movement was estimated to be at least 200 km, about half the value found for the Arctic Ocean but twice as large as previously suggested. The freshwater fluxes estimated from three iceberg export scenarios deduced from the iceberg drift pattern were highly variable. Assuming a transit time in the Weddell Sea of 1 year, the iceberg meltwater input of 31 Gt which is about a third of the basal meltwater input from the Filchner Ronne Ice Shelf but spreads across the entire Weddell Sea. Iceberg meltwater export of 14.2 × 103 m3 s?1, if all icebergs are exported, is in the lower range of freshwater export by sea ice.
Resumo:
The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.
Resumo:
The variability in size and shape of shells of the polar planktonic foraminifer Neogloboquadrina pachyderma have been quantified in 33 recent surface sediment samples throughout the northern Atlantic Ocean and correlated with the properties of the ambient surface waters. The aim of the study was to determine whether any of the morphological features could be used to reconstruct sea surface properties in the polar realm of the North Atlantic, where most paleotemperature proxies appear to fail. The analyses revealed that shell morphology is only weakly controlled by habitat properties, whereas shell size showed a strong correlation with sea surface temperature. The regression of mean shell size on sea surface temperature revealed the presence of two trends among the sinistrally coiled shells: a continuous increase in shell size with decreasing SST in sediments deposited under polar water masses and a continuous increase in shell size with increasing SST in samples from transitional waters. The second trend mirrors the trend observed for dextrally coiled shells, which are frequent in the same samples and signal the presence of N. incompta. The identical mean shell size trends among the sinistral and dextral specimens in the temperate samples confirms the results of earlier genetic studies which indicated the existence of a small but distinct proportion of opposite coiling in N. incompta, to which the sinistral shells in the temperate samples could be attributed. The linear correlation between mean shell size and sea surface temperature in the polar domain (summer SST < 9 °C) has been used to develop an empirical formula for the reconstruction of past sea surface temperatures from shell sizes in fossil samples. The standard error of the residuals of the linear regression is 2.36 °C (1 sigma), which implies a much larger error than for most paleothermometers, but enough precision to allow resolution between results by individual paleothermometers in the polar domain. The resulting regression model has been applied on two sediment cores spanning the interval from the Last Glacial Maximum (LGM) to the present day. The results from core PS1906-1 are consistent with ice-free conditions during the LGM in the Norwegian Sea. The SST estimates for the LGM inferred from N. pachyderma shell size are similar or slightly higher than those for the latest Holocene. The results do not indicate anomalously high SST during the glacial and the LGM reconstructions thus appear more consistent with the results from foraminiferal transfer functions and geochemical proxies. Both sediment cores show the highest reconstructed SST during the early Holocene insolation optimum.
Resumo:
A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies.
Resumo:
The measurements were obtained during two North Sea wide STAR-shaped cruises during summer 1986 and winter 1987, which were performed to investigate the circulation induced transport and biologically induced pollutant transfer within the interdisciplinary research in the project "ZISCH - Zirkulation und Schadstoffumsatz in der Nordsee / Circulation and Contaminant Fluxes in the North Sea (1984-1989)". The inventory presents parameters measured on hydrodynamics, nutrient dynamics, ecosystem dynamics and pollutant dynamics in the pelagic and benthic realm. The research program had the objective of quantifying fluxes of major budgets, especially contaminants in the North Sea. In spring 1986, following the phytoplankton spring bloom, and in late winter 1987, at minimum primary production activity, the North Sea ecosystem was investigated on a station net covering the whole North Sea. The station net was shaped like a star. Sampling started in the centre, followed by the northwest section and moving counter clockwise around the North Sea following the residual currents. By this strategy, a time series was measured in the central North Sea and more synoptic data sets were obtained in the individual sections. Generally advection processes have to be considered when comparing the data from different stations. The entire sampling period lasted for more than six weeks in each cruise. Thus, a time-lag should be considered especially when comparing the data from the eastern and the western part of the central and northern North Sea, where samples were taken at the beginning and at the end of the campaign. The ZISCH investigations represented a qualitatively and quantitatively new approach to North Sea research in several respects. (1) The first simultaneous blanket coverage of all important biological, chemical and physical parameters in the entire North Sea ecosystem; (2) the first simultaneous measurements of major contaminants (metals and organohaline compounds) in the different ecosystem compartments; (3) simultaneous determinations of atmospheric inputs of momentum, energy and matter as important ecosystem boundary conditions; (4) performance of the complex measurement program during two seasons, namely the spring plankton bloom and the subsequent winter period of minimal biological activity; and (5) support of data analysis and interpretation by oceanographic and meteorological numerical models on the same scales.
Resumo:
Ongoing zooplankton research at the Plymouth Marine Laboratory has established a time series of zooplankton species since 1988 at L4, a coastal station off Plymouth. Samples were collected by vertical net hauls (WP2 net, mesh 200 µm; UNESCO 1968) from the sea floor (approximately 50 m) to the surface and stored in 4% formalin. Much of the zooplankton analysis has been to the level of "major taxonomic groups" only, and a number of different analysts have participated over the years. The level of expertise has generally been consistent, but the user should be aware that levels of taxonomic discrimination may vary during the course of the dataset. The dominant calanoid copepods are generally well discriminated to species throughout. Calanus has not been routinely examined for species determination, the assumption being that the local population is entirely composed of Calanus helgolandicus. In certain years there has been a particular interest in Temora stylifera, Centropages cherchiae and other species reflected in the dataset. The lack of records in other previous years does not necessarily reflect species absence. We view it as essential for all users of L4 plankton data to establish and maintain contact with the nominated current data originators as well as fully consulting the metadata. While not impinging on free data access, this ensures that this large, species-rich but slightly complex species database is being used in the correct way, and any potential issues with the data are clarified. Furthermore, a proper dialogue with these local experts on the time series will enable where appropriate the most recent sampling timepoints to be used. The data can be downloaded from BODC or from doi:10.1594/PANGAEA.778092 as files for each year by searching for "L4 zooplankton". The most comprehensive dataset is the version downloadable directly from this page. The entire set of zooplankton samples is stored at the Plymouth Marine Laboratory in buffered formalin, and may be available for further taxonomic analysis on request.
Resumo:
The iterative evolutionary radiation of planktic foraminifers is a well-documented macroevolutionary process. Here we document the accompanying size changes in entire planktic foraminiferal assemblages for the past 70 My and their relationship to paleoenvironmental changes. After the size decrease at the Cretaceous/Paleogene (K/P) boundary, high latitude assemblages remained consistently small. Size evolution in low latitudes can be divided into three major phases: the first is characterized by dwarfs (65-42 Ma), the second shows moderate size fluctuations (42-14 Ma), and in the third phase, planktic foraminifers have grown to the unprecedented sizes observed today. Our analyses of size variability with paleoproxy records indicate that periods of size increase coincided with phases of global cooling (Eocene and Neogene). These periods were characterized by enhanced latitudinal and vertical temperature gradients in the oceans and high diversity (polytaxy). In the Paleocene and during the Oligocene, the observed (minor) size changes of the largely low-diversity (oligotaxic) assemblages seem to correlate with productivity changes. However, polytaxy per se was not responsible for larger test sizes.
Resumo:
It is shown that in 2002-2005 mass development of coccolithofore Emiliania huxleyi on the Gelendzhik shelf (northeast Black Sea) occurred annually and in May-June its abundance reached 1500000 cells/l. In 2004-2005 bloom of E. huxleyi was accompanied by mass development of diatom alga Chaetoceros subtilis var. abnormis f. simplex (600000-900000 cells/l). For the first time it was registered as a dominating form of Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in phytoplankton throughout the entire period of the studies. Meanwhile in the early summer period the bulk of biomass consisted of coccolithophores (50-60%), while in the late summer period diatomaceous algae dominated (50-70%). Among ecological factors that favor coccolithophore development one may note microstratification of the upper mixed layer at a high illumination level and high temperature in surface waters (18-21°C). Terrigenous runoff during the rainy period had a negative effect on E. huxleyi development, while storms dispersed the population over the upper mixed layer. A wind-induced near-shore upwelling stimulated development of diatoms.
Resumo:
On the basis of planktonic foraminifera study, thickness of Holocene sediments has been ascertained in 60 sediment cores from various regions of the Atlantic Ocean. Ratios of species reflect warming of the upper water layer at the Pleistocene-Holocene boundary over the entire ocean. The Holocene boundary can be determined not only from microfaunal data, but also from lithologic ones including textural and structural features. Increase in CaCO3 contents in Holocene sediments as compared to Pleistocene is from 5-7% to 60-70% in different parts of the ocean.