11 resultados para Dutch wit and humor.
em Publishing Network for Geoscientific
Resumo:
The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.
Resumo:
The Wadden Sea is located in the southeastern part of the North Sea forming an extended intertidal area along the Dutch, German and Danish coast. It is a highly dynamic and largely natural ecosystem influenced by climatic changes and anthropogenic use of the North Sea. Changes in the environment of the Wadden Sea, natural or anthropogenic origin, cannot be monitored by the standard measurement methods alone, because large-area surveys of the intertidal flats are often difficult due to tides, tidal channels and unstable underground. For this reason, remote sensing offers effective monitoring tools. In this study a multi-sensor concept for classification of intertidal areas in the Wadden Sea has been developed. Basis for this method is a combined analysis of RapidEye (RE) and TerraSAR-X (TSX) satellite data coupled with ancillary vector data about the distribution of vegetation, mussel beds and sediments. The classification of the vegetation and mussel beds is based on a decision tree and a set of hierarchically structured algorithms which use object and texture features. The sediments are classified by an algorithm which uses thresholds and a majority filter. Further improvements focus on radiometric enhancement and atmospheric correction. First results show that we are able to identify vegetation and mussel beds with the use of multi-sensor remote sensing. The classification of the sediments in the tidal flats is a challenge compared to vegetation and mussel beds. The results demonstrate that the sediments cannot be classified with high accuracy by their spectral properties alone due to their similarity which is predominately caused by their water content.
Resumo:
Specimens of Bolivina argentea and Bulimina marginata, two widely distributed temperate benthic foraminiferal species, were cultured at constant temperature and controlled pCO2 (ambient, 1000 ppmv, and 2000 ppmv) for six weeks to assess the effect of elevated atmospheric CO2 concentrations on survival and fitness using Adenosine Triphosphate (ATP) analyses and on shell microfabric using high-resolution SEM and image analysis. To characterize the carbonate chemistry of the incubation seawater, total alkalinity and dissolved inorganic carbon were measured approximately every two weeks. Survival and fitness were not directly affected by elevated pCO2 and the concomitant decrease in seawater pH and calcite saturation states (Omega c), even when seawater was undersaturated with respect to calcite. These results differ from some previous observations that ocean acidification can cause a variety of effects on benthic foraminifera, including test dissolution, decreased growth, and mottling (loss of symbiont color in symbiont-bearing species), suggesting that the benthic foraminiferal response to ocean acidification may be species specific. If so, this implies that ocean acidification may lead to ecological winners and losers even within the same taxonomic group.
Resumo:
Pollen and macrofossil analysis of lake sediments revealed the complete development of vegetation from Riss late-glacial to early Würm glacial times at Samerberg (12°12' E, 47°45' N, 600 m a.s.l) on the northern border of the Alps. The pollen bearing sediments overlie three stratigraphic units, at the base a ground-moraine, then a 13 m thick layer of pollen free silt and clay, and then a younger moraine; all the sediments including the pollen bearing sediments, lie below the Würm moraine. The lake, which had developed in an older glacial basin, became extinct, when the ice of the river Inn glacier filled its basin during Würm full-glacial time at the latest. One interglacial, three interstadials, and the interdigitating treeless periods were identified at Samerberg. Whereas the cold periods cannot be distinguished from one another pollenanalytically, the interglacial and the two older interstadials have distinctive characteristics. A shrub phase with Juniperus initiated reforestation and was followed by a pine phase during the interglacial and each of the three interstadials. The further development of the interglacial vegetation proceeded with a phase when deciduous trees (mainly Quercus, oak) and hazel (Corylus) dominated, though spruce (Picea) was present at the same time in the area. A phase with abundant yew (Taxus) led to an apparently long lasting period with dominant spruce and fir (Abies) accompanied by some hornbeam (Carpinus). The vegetational development shows the main characteristics of the Riss/Würm interglacial, though certain differences in the vegetational development in the northern alpine foreland are obvious. These differences may result from the existence of an altitudinal zonation of the vegetation in the vicinity of the site and are the expression of its position at the border of the Alps. A greater age (e.g. the Holsteinian) can be excluded by reason of the vegetational development, and is also not indicated at first sight from the geological and stratigraphical data of the site. Characteristic of the Riss/Würm vegetational development in southern Germany - at least in the region between Lake Starnberg/Samerberg/Salzach - is the conspicuous yew phase. According to absolute pollen counts, yew not only displaced the deciduous species, but also displaced spruce preferentially, thus indicating climatic conditions less favourable for spruce, caused by mild winters (Ilex spreading!) and by short-term low precipitation, indicated by the reduced sedimentation rate. The oldest interstadials is bipartite, as due to the climatic deterioration the early vegetational development, culminating in a spruce phase, had been interrupted by another expansion of pine. A younger spruce-dominated period with fir and perhaps also with hornbeam and beech (Fagus) followed. An identical climatic development has been reported from other European sites with long pollen sequences (see chapter 6.7). However, different tree species are found in the same time intervals in Middle Europe during Early Würm times. Sediments of the last interglacial (Eem or Riss/Würm) have been found in all cases below the sediments of the bipartite interstadial, and in addition one more interstadial occurs in the overlying sediments. This proves that Eem and Riss/Würm of the north-european plain resp. of the alpine foreland are contemporaneous interglacials although this has been questioned by some authors. The climax vegetation of the second interstadial was a spruce forest without fir and without more demanding deciduous tree species. The vegetational development of the third interstadial is recorded fragmentary only. But it has been established that a spruce forest was present. The oldest interstadial must correspond to the danish Brørup interstadial as it is expressed in northern Germany, the second one to the Odderade interstadial. A third Early Würm interstadial, preserved fragmentarily at Samerberg, is known from other sites. The dutch Amersfoort interstadial most likely is the equivalent to the older part of the bipartite danish Brørup interstadial.
Resumo:
Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (d15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the d15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the d15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in d15N of biomass (differences ranging from -2.3 to +1.8 per mil). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 per mil). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the d15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine d15N values differed by -7 to +2 per mil from bulk biomass d15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3 per mil) than the TLE (-7 per mil), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.
Resumo:
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.