127 resultados para Duluth, Missabe, and Iron Range Railway

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral compositions of residual peridotites collected at various locations in the Mid-Atlantic Ridge south of the Kane transform (MARK area) are consistent with generally smaller degrees of melting in the mantle near the large offset Kane transform than near the other, small offset, axial discontinuities in the area. We propose that this transform fault effect is due to along-axis variations in the final depth of melting in the subaxial mantle, reflecting the colder thermal regime of the ridge near the Kane transform. Calculations made with a passive mantle flow regime suggest that these along-axis variations in the final depth of melting would not produce the full range of crustal thickness variations observed in the MARK area seismic record. It is therefore likely that the transform fault effect in the MARK area is combined with other mechanisms capable of producing crustal thickness variations, such as along-axis melt migration, the trapping of part of the magma in a cold mantle root beneath the ridge, or active mantle upwelling.