156 resultados para DYNAMIC COMPOSITION CHANGES

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In SW Ethiopia, the moist evergreen Afromontane forest has become extremely fragmented and most of the remnants are intensively managed for coffee cultivation (Coffea arabica), with considerable impacts on biodiversity and ecosystem functioning. Because epiphytic orchids are potential indicators for forest quality and a proxy for overall forest biodiversity, we assessed the effect of forest management and forest fragmentation on epiphytic orchid diversity. We selected managed forest sites from both large and small forest remnants and compared their epiphytic orchid diversity with the diversity of natural unfragmented forest. We surveyed 339 canopy trees using rope climbing techniques. Orchid richness decreased and community composition changed, from the natural unfragmented forest, over the large managed forest fragments to the small managed forest fragments. This indicates that both forest management and fragmentation contribute to the loss of epiphytic orchids. Both the removal of large canopy trees typical for coffee management, and the occurrence of edge effects accompanying forest fragmentation are likely responsible for species loss and community composition changes. Even though some endangered orchid species persist even in the smallest fragments, large managed forest fragments are better options for the conservation of epiphytic orchids than small managed forests. Our results ultimately show that even though shade coffee cultivation is considered as a close-to-nature practice and is promoted as biodiversity conservation friendly, it cannot compete with the epiphytic orchid conservation benefit generated by unmanaged moist evergreen Afromontane forests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The clay mineral composition at IODP Exp. 323 Site U1343 in the Bering Sea was analyzed so as to unravel their provenance over glacial-interglacial cycles for the last 2.4 Ma. Smectite was negatively correlated with the sum of illite and chlorite; therefore, their ratio [S/(I + C)] was used as an indicator of clay mineral composition changes. In general, the S/(I + C) ratio was rather similar for glacial and interglacial periods during most of the last 2.4 Ma. In addition, these results overlap with those of surface sediments in the modern East Aleutian Basin, which suggests that smectite-rich clay particles are delivered from the Aleutians by the northward Bering Slope Current (BSC) rather than from rivers in western Alaska. However, some clay mineral compositions of the glacial periods after the Mid-Pleistocene Transition (MPT: 1.25-0.7 Ma) were characterized by low illite and relatively high smectite. During this period, extensive ice-rafting might have transported the smectite-rich clay particles to Site U1343 from the glacial shelf off Alaska and/or from glacial rivers from that area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediment composition and rate of deposition are the primary factors responsible for determining the spatial distribution of geotechnical properties on the Wring Plateau. Grain size and depth of burial have no significant influence. Vertical and lateral changes in geotechnical properties are associated with vertical and lateral composition changes in which biogenic silica is the most important variable. Anomalous trends of decreasing density and increasing porosity and water content with depth are associated with increasing silica content downsection. Void ratios, inferred in-situ permeability, and change in void ratio during consolidation testing are relatively high in siliceous sediments and tend to increase as the biogenic silica content increases. Portions of the section are overconsolidated, probably as a result of changes in sediment accumulation rates. However, the higher permeabilities of siliceous sediments may also be a factor influencing consolidation state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is found that hydrocarbons are constantly accumulated on the main geochemical barriers: water-atmosphere, river-sea, water-suspended matter, and water-bottom sediment interfaces. Degree of hydrocarbon accumulation reaches 13.5-17.6 in the surface microlayer and exceeds 1000 in bottom sediments. Hydrocarbon composition changes in this process. Local pollutant loads result in accumulation of polycyclic aromatic hydrocarbons by bottom sediments and benzo(a)pyrene concentration sometimes exceeds MPC. Content of hydrocarbon migratory forms is calculated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oceans take up more than 1 million tons of CO2 from the air per hour, about one-quarter of the anthropogenically released amount, leading to disrupted seawater chemistry due to increasing CO2 emissions. Based on the fossil fuel-intensive CO2 emission scenario (A1F1; Houghton et al., 2001), the H+ concentration or acidity of surface seawater will increase by about 150% (pH drop by 0.4) by the end of this century, the process known as ocean acidification (OA; Sabine et al., 2004; Doney et al., 2009; Gruber et al., 2012). Seawater pH is suggested to decrease faster in the coastal waters than in the pelagic oceans due to the interactions of hypoxia, respiration, and OA (Cai et al., 2011). Therefore, responses of coastal algae to OA are of general concern, considering the economic and social services provided by the coastal ecosystem that is adjacent to human living areas and that is dependent on coastal primary productivity. On the other hand, dynamic environmental changes in the coastal waters can interact with OA (Beardall et al., 2009).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.