26 resultados para DIVALENT COUNTERIONS
em Publishing Network for Geoscientific
Resumo:
Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.
Resumo:
Sr isotope analyses have been conducted on anhydrite samples from the TAG (Trans-Atlantic Geotraverse) active hydrothermal mound (26°08?N, Mid-Atlantic Ridge) that have previously been shown to exhibit two distinct patterns of REE behavior when normalized to TAG end-member hydrothermal fluid. Despite differences in REE patterns, the Sr isotope data indicate that all the anhydrites precipitated from fluids with a similar range of hydrothermal fluid and seawater components, and all but one were seawater-dominated (52%-75%). Speciation calculations using the EQ3/6 software package for geochemical modeling of aqueous systems suggest that the REE complexation behavior in different fluid mixing scenarios can explain the variations in the REE patterns. Anhydrites that exhibit relatively flat REE patterns [(La_bs)/(Yb_bs) = 0.8-2.0; subscript bs indicates normalization to end-member black smoker hydrothermal fluid] and a small or no Eu anomaly [(Eu_bs)/(Eu*_bs) = 0.8-2.0] are inferred to have precipitated from mixes of end-member hydrothermal fluid and cold seawater. REE complexes with hard ligands (e.g., fluoride and chloride) are less stable at low temperatures and trivalent Eu has an ionic radius similar to that of Ca2+ and the other REE, and so they behave coherently. In contrast, anhydrites that exhibit slight LREE-depletion [(La_bs)/(Yb_bs) = 0.4-1.4] and a distinct negative anomaly [(Eu_bs)/(Eu*_bs) = 0.2-0.8] are inferred to have precipitated from mixes of end-member hydrothermal fluid and conductively heated seawater. The LREE depletion results from the presence of very stable LREE chloro-complexes that effectively limit the availability of the LREE for partitioning into anhydrite. Above 250°C, Eu is present only in divalent form as chloride complexes, and discrimination against Eu2+ is likely due to both the mismatch in ionic radii between Eu2+ and Ca2+, and the strong chloro-complexation of divalent Eu which promotes stability in the fluid and inhibits partitioning of Eu2+ into precipitating anhydrite. These variations in REE behavior attest to rapid fluctuations in thermal regime, fluid flow and mixing in the subsurface of the TAG mound that give rise to heterogeneity in the formation conditions of individual anhydrite crystals.
Resumo:
We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.
Resumo:
Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.