Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite


Autoria(s): Müller, Marius N; Lebrato, Mario; Riebesell, Ulf; Barcelos e Ramos, Joana; Schulz, Kai Georg; Blanco-Ameijeiras, S; Sett, Scarlett; Eisenhauer, Anton; Stoll, Heather M
Data(s)

23/07/2014

Resumo

Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.

Formato

text/tab-separated-values, 2247 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.834251

doi:10.1594/PANGAEA.834251

Idioma(s)

en

Publicador

PANGAEA

Relação

Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Müller, Marius N; Lebrato, Mario; Riebesell, Ulf; Barcelos e Ramos, Joana; Schulz, Kai Georg; Blanco-Ameijeiras, S; Sett, Scarlett; Eisenhauer, Anton; Stoll, Heather M (2014): Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite. Biogeosciences, 11(4), 1065-1075, doi:10.5194/bg-11-1065-2014

Palavras-Chave #Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; calcification; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate/Nitrogen, particulate ratio; Carbon, organic, particulate/Nitrogen, particulate ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a, production, per cell; Chlorophyll a, production, standard deviation; Coulometric titration; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); growth; Growth rate; Growth rate, standard deviation; Iron/Calcium ratio; Irradiance; laboratory; Light:Dark cycle; Magnesium/Calcium ratio; Magnesium/Calcium ratio, standard deviation; Magnesium distribution coefficient; methods; multiple factors; Nitrogen, total particulate production per cell; Nitrogen, total particulate production standard deviation; nutrients; OA-ICC; Ocean Acidification International Coordination Centre; paleo; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon production per cell; Particulate organic carbon, production, standard deviation; pH; pH, standard deviation; Phosphorus/Calcium ratio; photosynthesis; phytoplankton; Potentiometric titration; Production of particulate organic carbon per cell; Salinity; Species; Strontium, partition coefficient; Strontium/Calcium ratio; Strontium/Calcium ratio, standard deviation; temperature; Temperature, water
Tipo

Dataset