6 resultados para DEPENDENT INTER-OCCURRENCES TIMES
em Publishing Network for Geoscientific
Resumo:
In-situ Fe isotope measurements have been carried out to estimate the impact of the hydrothermal metamorphic overprint on the Fe isotopic composition of Fe-Ti-oxides and Fe-sulfides of the different lithologies of the drilled rocks from IODP Hole 1256D (eastern equatorial Pacific; 15 Ma crust formed at the East Pacific Rise). Most igneous rocks normally have a very restricted range in their 56Fe/54Fe ratio. In contrast, Fe isotope compositions of hot fluids (> 300 °C) from mid-ocean-ridge spreading centers define a narrow range that is shifted to lower delta 56Fe values by 0.2 per mil - 0.5 per mil as compared to igneous rocks. Therefore, it is expected that mineral phases that contain large amounts of Fe are especially affected by the interaction with a fluid that fractionates Fe isotopes during exsolution/precipitation of those minerals. We have used a femtosecond UV-Laser ablation system to determine mineral 56Fe/54Fe ratios of selected samples with a precision of < 0.1 per mil (2 sigma level) at micrometer-scale. We have found significant variations of the delta 56Fe (IRMM-014) values in the minerals between different samples as well as within samples and mineral grains. The overall observed scale of delta 56Fe (magnetite) in 1256D rocks ranges from - 0.12 to + 0.64 per mil, and of delta 56Fe (ilmenite) from - 0.77 to + 0.01 per mil. Pyrite in the lowermost sheeted dike section is clearly distinguishable from the other investigated lithological units, having positive delta 56Fe values between + 0.29 and + 0.56 per mil, whereas pyrite in the other samples has generally negative delta 56Fe values from - 1.10 to - 0.59 permil. One key observation is that the temperature dependent inter-mineral fractionations of Fe isotopes between magnetite and ilmenite are systematically shifted towards higher values when compared to theoretically expected values, while synthesized, well equilibrated magnetite-ilmenite pairs are compatible with the theoretical predictions. Theoretical considerations including beta-factors of different aqueous Fe-chlorides and Rayleigh-type fractionations in the presence of a hydrous, chlorine-bearing fluid can explain this observation. The disagreement between observed and theoretical equilibrium fractionation, the fact that magnetite, in contrast to ilmenite shows a slight downhole trend in the delta 56Fe values, and the observation of small scale heterogeneities within single mineral grains imply that a general re-equilibration of the magnetite-ilmenite pairs is overprinted by kinetic fractionation effects, caused by the interaction of magnetite/ilmenite with hydrothermal fluids penetrating the upper oceanic crust during cooling, or incomplete re-equilibration at low temperatures. Furthermore, the observation of significant small-scale variations in the 56Fe/54Fe ratios of single minerals in this study highlights the importance of high spatial-resolution-analyses of stable isotope ratios for further investigations.
Resumo:
Along the N-S-transect of DSDP-Sites 5446, 397, 141, and 366, oxygen and carbon isotopes, flux rates of calcium carbonate, terrigenous matter, and biogenic opal, clay minerals and the size distribution of terrigenous partictes were determined in order to assess the ties between atmospheric and oceanic surface and deep-water circulation off northwest Africa during the late Neogene. During the last 9 m.y., both the paleoceanography in the eastern Atlantic and west African paleodimates were intimately correlated with the evolution of the polar ice sheets as reflected in the benthos d18O curves of the 4 DSDP-Sites. These records make it possible to distinguish six major time intervals which were charaterized by long-term persistent regimes of climatic stability or climatic change. Short-term, "Milankovitch"-type cycles superimpose the long-term climatic evolution and may reflect the chronostratigraphic control fluctuations of the solar insolation persisting back to pre-Pleistocene times. Relatively stable, warm climates prevailed during the late Tortonian/early Messinean, 9 to 6 m.y., and the early Pliocene, 4.5 to 3.5 m.y. ago. Based on d18O curves, the amplitudes of short-term climatic variation were generally low, and the ice sheets were smaller than during peak Holocene time. Oceanic circulation and resulting paleoproductivity in upwelling zones were insignificant. The strength of dust supplying meridional trade winds was low (3 to 5 m/s), interglacial-style zonal winds near the ITCZ were dominant, as indicated by the high abundance of kaolinite. Phases of fluvial sediment supply were common. Humidity was characteristic of the climate in northwest Africa for the major part of this time. Major episodes of climatic deterioration in the subtropics occurred in the latest Miocene/early Pliocene, between some 5.6 and 5.2 and between 4.9 and 4.6 m.y. ago, in the late Pliocene, between 3.2 and 2.4 m.y. ago, and again in the Quaternary, near 1 m.y. ago. The episodes were correlated with marked increases of the global ice volume, as revealed by drastic increases of d18O values. They suggest sea-level falls of up to 70 m below the present sea level in the latest Miocene and earliest Pliocene and of 145 m in the latest Pliocene and Quaternary. The climatic changes resulted in strongly enhanced meridional trade winds as suggested by coarser terrigenous grain-sizes, increased mass accumulation rates of eolian dust, and changes in clay-mineral composition from dominantly kaolinite to illite and chlorite. The meridional trade winds reached speeds of 8 to 10 m/s with a maximum near 15 m/s. The enhanced winds probably led t o intensified coastal upwelling as shown by the contemporaneous local increase i n the deposition of biogenic silica and the local depletion of 13C at Site 397. The most drastic environmental changes near 2.4 and 1 m.y. ago coincide with hiatuses which may indicate phases of general erosion due to strongly enhanced deep-water circulation in the northeast At1antic along the northwest African continental margin. The occasional occurrence of quartz grains coarser than 250 µm may suggest ice-rafted debris in sediments off Morocco. During these time intervals the climate in NW-Africa was dominantly arid. Nevertheless, fluvial runoff (and humidity) continued to be important during intermittent warm phases of the short-term climatic cycles. During the end and the beginning of (inter-) glacial times, fluvial supply of nutrients seems to be the dominant factor, controling phases of enhanced paleoproductivity observed off northwest Africa, whereas during phases of glacial maximum strenger fertility of (increased) coastal upwelling becomes more important. A long-term evolution of paleoenvironments during the last 40 m.y. is depicted in the sediments of Site 366 and is clearly controlled by the plate tectonic route of this Site. During Oligocene times, Site 366 lay in the center of the equatorial upwelling, as shown by the high content of biogenic silica contributing up to 100 % of the carbonate-free sediment fraction >6 µm. The influence of equatorial upwelling abruptly terminated near 15 m.y. ago, a change in the record exaggerated by a hiatus of about 2 m.y. Prior to 25 m.y., the terrigenous input at the paleolatitude of Site 366 was restricted t o eolian sediment supply from South Africa by southeasterly trade winds, as shown by dominantly illite and chlorite in the clay fraction and extremely fine-grained terrigenous matter. Near the Oligocene/Miocene boundary, Site 366 drifted across the equator into the belt of the northeasterly trade winds, which is inferred from the increased content of kaolinite and coarser grain sizes of the terrigenous sediment fraction. The clay-mineral and grain-size compositions of Site 366 do not reflect a noteworthy northward shift of the ITCZ during late Miocene and early Pliocene times, i.e. no marked global circulation asymmetry due to the possible absence of a major Northern Hemisphere glaciation (Flohn 1981). This lack of a more northerly position of the ITCZ may result from a bipolar glaciation already existing during late Miocene times, such as also suggested by the evidence of tillites on Iceland and in southern Alaska during those intervals (e.g., Denton & Amstrong 1969, Mudie & Helgason 1983).
Resumo:
A quantitative study of late Cenozoic silicoflagellates from the northwestern Pacific sites of Deep Sea Drilling Project Leg 86 shows a relative paleotemperature (Ts) gradient with lowest values (Ts = 30) in the north. Some new ecostratigraphic relations for the region are indicated, such as the last common occurrence of Dictyocha brevispina at 2.6 - 3.0 m.y. ago during a cool interval. Elements of North Pacific and low-latitude biostratigraphic zonations can be identified, but the mixing of cool- and warm-indicator taxa prompted the definition of the new Miocene Mesocena hexalitha Subzone and Pliocene Distephanus jimlingii Subzone. Scanning-electron microscope study of Leg 86 silicoflagellates was done to determine whether various types of skeletal surface texture are temperature dependent. To conduct the study we organized a new surface-texture descriptive code, which characterizes the apical structure/basal ring/spine sequence using new definitions of the terms crenulate (C), linear (L), nodular (N), reticulate (R), and smooth (S). One new silicoflagellate genus, Caryocha Bukry et Monechi, n. gen., is described and several new combinations are made.
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
The ocean quahog, Arctica islandica is the longest-lived non-colonial animal known to science. A maximum individual age of this bivalve of 405 years has been found in a population off the north western coast of Iceland. Conspicuously shorter maximum lifespan potentials (MLSPs) were recorded from other populations of A. islandica in European waters (e.g. Kiel Bay: 30 years, German Bight: 150 years) which experience wider temperature and salinity fluctuations than the clams from Iceland. The aim of my thesis was to identify possible life-prolonging physiological strategies in A. islandica and to examine the modulating effects of extrinsic factors (e.g. seawater temperature, food availability) and intrinsic factors (e.g. species-specific behavior) on these strategies. Burrowing behavior and metabolic rate depression (MRD), tissue-specific antioxidant and anaerobic capacities as well as cell-turnover (= apoptosis and proliferation) rates were investigated in A. islandica from Iceland and the German Bight. An inter-species comparison of the quahog with the epibenthic scallop Aequipecten opercularis (MLSP = 8-10 years) was carried out in order to determine whether bivalves with short lifespans and different lifestyles also feature a different pattern in cellular maintenance and repair. The combined effects of a low-metabolic lifestyle, low oxidative damage accumulation, and constant investment into cellular protection and tissue maintenance, appear to slow-down the process of physiological aging in A. islandica and to afford the extraordinarily long MLSP in this species. Standard metabolic rates were lower in A. islandica when compared to the shorter-lived A. opercularis. Furthermore, A. islandica regulate mantle cavity water PO2 to mean values < 5 kPa, a PO2 at which the formation of reactive oxygen species (ROS) in isolated gill tissues of the clams was found to be 10 times lower than at normoxic conditions (21 kPa). Burrowing and metabolic rate depression (MRD) in Icelandic specimens were more pronounced in winter, possibly supported by low seawater temperature and food availability, and seem to be key energy-saving and life-prolonging parameters in A. islandica. The signaling molecule nitric oxide (NO) may play an important role during the onset of MRD in the ocean quahog by directly inhibiting cytochome-c-oxidase at low internal oxygenation upon shell closure. In laboratory experiments, respiration of isolated A. islandica gills was completely inhibited by chemically produced NO at low experimental PO2 <= 10 kPa. During shell closure, mantle cavity water PO2 decreased to 0 kPa for longer than 24 h, a state in which ROS production is supposed to subside. Compared to other mollusk species, onset of anaerobic metabolism is late in A. islandica in the metabolically reduced state. Increased accumulation of the anaerobic metabolite succinate was initially detected in the adductor muscle of the clams after 3.5 days under anoxic incubation or in burrowed specimens. A ROS-burst was absent in isolated gill tissue of the clams following hypoxia (5 kPa)-reoxygenation (21 kPa). Accordingly, neither the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), nor the specific content of the ROS-scavenger glutathione (GSH) was enhanced in different tissues of the ocean quahog after 3.5 days of self-induced or forced hypoxia/anoxia to prepare for an oxidative burst. While reduced ROS formation compared to routine levels lowers oxidative stress during MRD and also during surfacing, the general preservation of high cellular defense and the efficient removal and replacement of damaged cells over lifetime seem to be of crucial importance in decelerating the senescent decline in tissues of A. islandica. Along with stable antioxidant protection over 200 years of age, proliferation rates and apoptosis intensities in most investigated tissues of the ocean quahog were low, but constant over 140 years of age. Accordingly, age-dependent accumulations of protein and lipid oxidation products are lower in A. islandica tissues when compared to the shorter-lived bivalve A. opercularis. The short-lived swimming scallop is a model bivalve species representing the opposite life and aging strategy to A. islandica. In this species permanently high energy throughput, reduced investment into antioxidant defense with age, and higher accumulation of oxidation products are met by higher cell turnover rates than in the ocean quahog. The only symptoms of physiological change over age ever found in A. islandica were decreasing cell turnover rates in the heart muscle over a lifetime of 140 years. This may either indicate higher damage levels and possibly ongoing loss of functioning in the heart of aging clams, or, the opposite, lower rates of cell damage and a reduced need for cell renewal in the heart tissue of A. islandica over lifetime. Basic physiological capacities of different A. islandica populations, measured at controlled laboratory conditions, could not explain considerable discrepancies in population specific MLSPs. For example, levels of tissue-specific antioxidant capacities and cell turnover rates were similarly high in individuals from the German Bight and from Iceland. Rather than genetic differences, the local impacts of environmental conditions on behavioral and physiological traits in the ocean quahog seem to be responsible for differences in population-specific MLSPs.
Resumo:
B Body wet weight and mantle length of juvenile Sepia officinalis were monitored over a peroid of five weeks. The animals had hatched in our aquarium system in Bremerhaven, Germany at 16°C and were descendants of individuals collected in the Oosterschelde estuary, Netherlands. Animals were kept in natural sea water at 10 or 17°C and fed small live shrimp (Palaemonetes varians) ad libitum daily. At the end of the experiment some animals kept at 17°C were sacrificed using ethanol. Haemolymph was withdrawn from the head vein using syringe and needle. Haemolymph samples were stored at -20°C until Na+, Cl-, K+, Mg2+, Ca2+ and SO42- concentrations were determined using ion chromatography. Mean body weight more that tripled at 17°C during the investigation period, while growth was impared by exposue to 10°C. Haemolymph ion concentrations were similar to those in sea water, except for sulphate. The concentration of this ion in the haemolymph was more that ten times lower than in sea water.