9 resultados para Constant light

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 µmol/L) or high (800 µmol/L) [NO3(-)] and at high (1000 µatm) or low (390 µatm, ambient) pCO2. The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) µmol/m**2/s or (2) fluctuating light between 100 or 500 µmol photons/m**2/s with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3(-) concentrations for maximum growth. After exposure to light for 3h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F'(v)/F'(m)). Fluctuating light ameliorated growth in the first period of illumination. In the second 3h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3(-) concentration was lower. F'(v)/F'(m) respondent differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 µmol/m**2/s, and always higher at 500 µmol/m**2/s. Our data show that the impact of atmospheric pCO2 increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed. The impact of global change on oceanic primary producers would therefore be different in waters with different chemical and physical (mixing) properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present volume contains the planktological data collected during the expedition of the "Meteor" to the Indian Ocean in 1964/65. It was the main objective of the expedition to study the up- and downwelling conditioned along the western and eastern coasts of the Arabian Sea by the northeastern monsoon. It is from these areas that the greater part of the data here presented was obtained. A few values from the Red Sea have been added. As the title "Planktological-Chemical Data" implies, it was chiefly with the help of chemical methods that the planktological investigations, with the exception of the particle size analysis and phytoplankton counting conducted optically, were carried out. These investigations were above all devoted to a quantitative survey of particulate matter and plankton, the latter being sampled by water-bottle and net. The zooplankton hauls were taken with the Indian Ocean Standard Net according to the international guidelines laid down for the expedition. As a rule, double catches were made at every station, one sample being intended for laboratory analysis at the Indian Ocean Biological Centre in Ernakulam, South India, and the other for the Institut für Meereskunde in Kiel. In addition to determining the standing stock, the production rate of phytoplankton was measured by the 14C method. These experiments were mainly conducted during the latter half of the expedition. The planktological studies primarily covered the euphotic zone, extending into the underlying water layers up to a depth of 600 m. The investigations were above all directed towards ascertaining the quantity of organic substance, formed by primary production, in its relation to environmental conditions and determining whether or not organic substance is actively transported from the surface into the deeper layers by the periodically migration organisms of the deep scattering layers. Depending on the station time available, a few samples could now and then be taken from deeper layers. The present volume of planktological-chemical data addresses itself to all those concerned processing the extensive material collected during the International Indian Ocean Expedition. As a readily accessible work of reference, it hopes to serve as an aid in the evaluation and interpretation of the expedition results. The complementary ecological data such as temperature, salinity, and oxygen content as well as the figures obtained on abundance and distribution in depth of the nutrients essential for primary production may be found in the volume of physical-chemical data published in Series A of the "Meteor"-Forschungsergebnisse No. 2, 1966 (Dietrich et al., 1966).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work in this sub-project of ESOP focuses on the advective and convective transforma-tion of water masses in the Greenland Sea and its neighbouring areas. It includes observational work on the sub-mesoscale and analysis of hydrographic data up to the gyre-scale. Observations of active convective plumes were made with a towed chain equipped with up to 80 CTD sensors, giving a horizontal and vertical resolution of the hydrographic fields of a few metres. The observed scales of the penetrative convective plumes compare well with those given by theory. On the mesoscale the structure of homogeneous eddies formed as a result of deep convection was observed and the associated mixing and renewal of the intermediate layers quantified. The relative importance and efficiency of thermal and haline penetrative convection in relation to the surface boundary conditions (heat and salt fluxes and ice cover) and the ambient stratification are studied using the multi year time series of hydro-graphic data in the central Greenland Sea. The modification of the water column of the Greenland Sea gyre through advection from and mixing with water at its rim is assessed on longer time scales. The relative contributions are quantified using modern water mass analysis methods based on inverse techniques. Likewise the convective renewal and the spreading of the Arctic Intermediate Water from its formation area is quantified. The aim is to budget the heat and salt content of the water column, in particular of the low salinity surface layer, and to relate its seasonal and interannual variability to the lateral fluxes and the fluxes at the air-sea-ice interface. This will allow to estimate residence times for the different layers of the Greenland Sea gyre, a quantity important for the description of the Polar Ocean carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Aleutian abyssal plain is a fossil abyssal plain of Paleogene age in the western Gulf of Alaska. The plain is a large, southward-thinning turbidite apron now cut off from sediment sources by the Aleutian Trench. Turbidite sedimentation ceased about 30 m.y. ago, and the apron is now buried under a thick blanket of pelagic deposits. Turbidites of the plain were recovered at site 183 of the Deep Sea Drilling Project on the northern edge of the apron. The heavy-mineral fraction of sand-sized samples is mostly amphibole and epidote with minor pyroxene, garnet, and sphene. The light-mineral fraction is mostly quartzose debris and feldspars. Subordinate lithic fragments consist of roughly equal amounts of metamorphic, plutonic, sedimentary, and volcanic grains. The sand compositions are arkoses in many sandstone classifications, although if fine silt is included with clay as matrix, the sand deposits are feldspathic or lithofeldspathic graywacke. The sands are apparently first-cycle products of deep dissection into a plutonic terrane, and they contrast sharply with arc-derived volcanic sandstones of similar age common on the adjacent North American continental margin. The turbidite sands are stratigraphically remarkably constant in composition, which indicates derivation from virtually the same terrane through a time span approaching 20 m.y. Comparison of Aleutian plain data with the compositions of coeval sedimentary rocks from the northeast Pacific margin shows that the Kodiak shelf area includes possible proximal equivalents of the more distal turbidites. Derivation from the volcaniclastic Mesozoic flysch of the Shumagin-Kodiak shelf is unlikely; more probably the sediments were derived from primary plutonic sources. The turbidites also resemble deposits in the Chugach Mountains and the younger turbidites of the Alaskan abyssal plain and could conceivably have been derived from the coast ranges of southeastern Alaska or western British Columbia. The Aleutian plain sediment most likely was not derived from as far south as the Oregon-Washington continental margin, where coeval sedimentary deposits are dominantly volcaniclastic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe interactive effects of total phosphorus (total P = 0.1-4.0 µmol/L; added as H2NaPO4), irradiance (40 and 150 µmol quanta/m**2/s), and the partial pressure of carbon dioxide (P-CO2; 19 and 81 Pa, i.e., 190 and 800 ppm) on growth and CO2- and dinitrogen (N-2)-fixation rates of the unicellular N-2-fixing cyanobacterium Crocosphaera watsonii (WH0003) isolated from the Pacific Ocean near Hawaii. In semicontinuous cultures of C. watsonii, elevated P-CO2 positively affected growth and CO2- and N-2-fixation rates under high light. Under low light, elevated P-CO2 positively affected growth rates at all concentrations of P, but CO2- and N-2-fixation rates were affected by elevated P-CO2 only when P was low. In both high-light and low-light cultures, the total P requirements for growth and CO2- and N-2-fixation declined as P-CO2 increased. The minimum concentration (C-min) of total P and half-saturation constant (K-1/2) for growth and CO2- and N-2-fixation rates with respect to total P were reduced by 0.05 µmol/L as a function of elevated P-CO2. We speculate that low P requirements under high P-CO2 resulted from a lower energy demand associated with carbon-concentrating mechanisms in comparison with low-P-CO2 cultures. There was also a 0.10 µmol/L increase in C-min and K-1/2 for growth and N-2 fixation with respect to total P as a function of increasing light regardless of P-CO2 concentration. We speculate that cellular P concentrations are responsible for this shift through biodilution of cellular P and possibly cellular P uptake systems as a function of increasing light. Changing concentrations of P, CO2, and light have both positive and negative interactive effects on growth and CO2-, and N-2-fixation rates of unicellular oxygenic diazotrophs like C. watsonii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.