The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3- and CO2 availability


Autoria(s): Zheng, Ying; Giordano, Mario; Gao, Kunshan
Data(s)

24/09/2015

Resumo

Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 µmol/L) or high (800 µmol/L) [NO3(-)] and at high (1000 µatm) or low (390 µatm, ambient) pCO2. The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) µmol/m**2/s or (2) fluctuating light between 100 or 500 µmol photons/m**2/s with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3(-) concentrations for maximum growth. After exposure to light for 3h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F'(v)/F'(m)). Fluctuating light ameliorated growth in the first period of illumination. In the second 3h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3(-) concentration was lower. F'(v)/F'(m) respondent differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 µmol/m**2/s, and always higher at 500 µmol/m**2/s. Our data show that the impact of atmospheric pCO2 increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed. The impact of global change on oceanic primary producers would therefore be different in waters with different chemical and physical (mixing) properties.

Formato

text/tab-separated-values, 48164 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.851340

doi:10.1594/PANGAEA.851340

Idioma(s)

en

Publicador

PANGAEA

Relação

Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Zheng, Ying; Giordano, Mario; Gao, Kunshan (2015): The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3- and CO2 availability. Journal of Plant Physiology, 180, 18-26, doi:10.1016/j.jplph.2015.01.020

Palavras-Chave #Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids, standard deviation; Carotenoids per cell; Cell density; Cell density, standard deviation; Chlorophyll a, standard deviation; Chlorophyll a per cell; Coulometric titration; Effective quantum yield; Effective quantum yield, standard deviation; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth rate; Growth rate, standard deviation; Light mode; Mycosporine-like amino acid, per cell; Mycosporine-like amino acid, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Ratio; Ratio, standard deviation; Salinity; Species; Temperature, water; Time in hours; Time in minutes; Treatment
Tipo

Dataset