61 resultados para Congregational churches North Consociation of Litchfield County.
em Publishing Network for Geoscientific
(Table 1) Field relationship of selected samples recovered from the north wall of the Hess Deep Rift
Resumo:
Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.
Resumo:
An investigation of ~1-m.y.-old dikes and lavas from the north wall of the Hess Deep Rift (2°15'N, 101°30'W) collected during Alvin expeditions provides a detailed view of the evolution of fast spreading oceanic crust. The study area encompasses 25 km of an east-west flow line, representing ~370,000 years of crustal accretion at the East Pacific Rise. Samples analyzed exhibit depleted incompatible trace element abundances and ratios [(La/Sm)N < 1]. Indices of fractionation (MgO), and incompatible element ratios (La/Sm, Nb/Ti) show no systematic trends along flow line. Rather, over short (<4 m) and long (~25 km) distances, significant variations are observed in major and trace element concentrations and ratios. Modeling of these variations attests to the juxtaposition of dikes of distinct parental magma compositions. These findings, combined with studies of segmentation of the subaxial magma chamber and lateral magma transport in dikes along rift-dominated systems, suggest a more realistic model of the magmatic system underlying the East Pacific Rise relative to the commonly assumed twodimensional model. In this model, melts from a heterogeneous mantle feed distinct portions of a segmented axial magma reservoir. Dikes emanating from these distinct reservoirs transport magma along axis, resulting in interleaved dikes and host lavas with different evolutionary histories. This model suggests the use of axial or flow line lava compositions to infer the evolution of axial magma chambers should be approached with caution because dikes may never erupt lava or may transport magma significant distances along axis and erupt lavas far from their axial magma chamber of origin.
Resumo:
Microfossil assemblages in Pliocene sediments from DSDP Site 274 (68°59.81'S, 173°2564'E) provide data on the age of the sediments and suggest the presence of Nothofagus (southern beach) in Antarctica during the Pliocene. A suite of 17 samples was collected in an interval from Samples 28-274-6R-1, 83-87 cm to 28-274-11R-4, 73-77 cm (48.33-100.29 mbsf). Biostratigraphic study of the abundant diatom assemblages combined with published radiolarian data indicates that the sample interval ranges in age from 5.0 to 2.2 Ma, with an apparent unconformity between about 3.8 and 3.2 Ma. Nothofagidites (the genus for fossil pollen referable to Nothofagus) occurs throughout the interval, as well as pollen and spores with known stratigraphic ranges that unequivocally indicate reworking from older rocks. Species of Nothofagidites recovered include N. asperus, N. brachyspinulosus, N. flemingii, N. senectus, and N. sp. cf. N. lachlaniae; the latter form is previously known from the Sirius Group in the Transantarctic Mountains. Abundant palynomorphs were recovered in only three of the samples from Site 274 (Samples 28-274-9R-2,15-19 cm; 28-274-9R-2,48-52 cm; and 28-274-9R-2,65-69 cm). Based on the diatom and radiolarian biostratigraphic data, the ages of these samples range from 3.00 to 3.01 Ma. The relative abundance of N. sp. cf. N. lachlaniae in the three samples is an order of magnitude higher than relative abundances for the other species of Nothofagidites in the same samples. The signiticantly higher relative abundance of N. sp. cf. N. luchlaniae suggests that this pollen was derived from trees of Nothofugus that were living in Antarctica during the mid Pliocene. Diatom assemblages from these three samples indicate that sediments in this interval were rapidly deposited as biogenic oozes in an open-ocean setting relatively free of sea ice, thus decreasing the possibility of reworking from a single source bed rich in N. sp. cf. N. lachlaniae. Clearly, more detailed work in additional well-dated cores from around Antarctica is needed before a clear picture of the Neogene history of Antarctic terrestrial vegetation emerges.
Resumo:
Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.