20 resultados para Comparative and Evolutionary Physiology
em Publishing Network for Geoscientific
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons/m**2 /s). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.
Resumo:
Understanding the evolutionary history of threatened populations can improve their conservation management. Re-establishment of past but recent gene flow could re-invigorate threatened populations and replenish genetic diversity, necessary for population persistence. One of the four nominal subspecies of the common yellow-tufted honeyeater, Lichenostomus melanops cassidix, is critically endangered despite substantial conservation efforts over 55 years. Using a combination of morphometric, genetic and modelling approaches we tested for its evolutionary distinctiveness and conservation merit. We confirmed that cassidix has at least one morphometric distinction. It also differs genetically from the other subspecies in allele frequencies but not phylogenetically, implying that its evolution was recent. Modelling historical distribution supported the lack of vicariance and suggested a possibility of gene flow among subspecies at least since the late Pleistocene. Multi-locus coalescent analyses indicated that cassidix diverged from its common ancestor with neighbouring subspecies gippslandicus sometime from the mid-Pleistocene to the Holocene, and that it has the smallest historical effective population size of all subspecies. It appears that cassidix diverged from its ancestor with gippslandicus through a combination of drift and local selection. From patterns of genetic subdivision on two spatial scales and morphological variation we concluded that cassidix, gippslandicus and (melanops + meltoni) are diagnosable as subspecies. Low genetic diversity and effective population size of cassidix may translate to low genetic fitness and evolutionary potential, thus managed gene flow from gippslandicus is recommended for its recovery.
Resumo:
A generally rich radiolarian fauna ranging in age from Quaternary to early Eocene (Zone RP7) was found at five of the eight sites drilled during Ocean Drilling Program (ODP) Leg 199. Of particular interest are the stratigraphically complete assemblages that range in age from middle Miocene (Zone RN5) to early Eocene (Zone RP7), composites of Sites 1218, 1219, and 1220. At the same sites, multisensor track (MST) data show consistent cycles in gamma ray attenuation density, color, and carbonate content that can be correlated on a submeter scale from the early Miocene to early Eocene. In addition, the magnetic reversal records from these three sites allow construction of an absolute timescale. A series of 305 radiolarian morphologic first and last occurrences and evolutionary transitions for radiolarians were determined and correlated directly with the accompanying MST and paleomagnetic data, resulting in a detailed and accurate dating of events. Since many of the bioevents are found at more than one site, it was also possible to test their reliability within the study area. Twelve new species are described: Calocycletta (Calocycletta) anekathen, Dorcadospyris anastasis, Dorcadospyris copelata, Dorcadospyris cyclacantha, Dorcadospyris ombros, Dorcadospyris scambos, Eucyrtidium mitodes, Theocyrtis careotuberosa, Theocyrtis perpumila, Theocyrtis perysinos, Theocyrtis setanios, and Thyrsocyrtis (Pentalacorys) orthotenes.
Resumo:
The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ~3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (Biodiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.
Resumo:
This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.
Resumo:
We report an investigation of the effects of increases in pCO2 on the survival, growth and molecular physiology of the neritic amphipod Gammarus locusta which has a cosmopolitan distribution in estuaries. Amphipods were reared from juvenile to mature adult in laboratory microcosms at three different levels of pH in nominal range 8.1-7.6. Growth rate was estimated from weekly measures of body length. At sexual maturity the amphipods were sacrificed and assayed for changes in the expression of genes coding for a heat shock protein (hsp70 gene) and the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (gapdh gene). The data show that the growth and survival of this species is not significantly impacted by a decrease in sea water pH of up to 0.5 units. Quantitative real-time PCR analysis indicated that there was no significant effect of growth in acidified sea water on the sustained expression of the hsp70 gene. There was a consistent and significant increase in the expression of the gapdh gene at a pH of ~7.5 which, when combined with observations from other workers, suggests that metabolic changes may occur in response to acidification. It is concluded that sensitive assays of tissue physiology and molecular biology should be routinely employed in future studies of the impacts of sea water acidification as subtle effects on the physiology and metabolism of coastal marine species may be overlooked in conventional gross "end-point" studies of organism growth or mortality.
Resumo:
Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.
Resumo:
Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.
Resumo:
Sediment samples from both Site 165-999/165-1000 (Atlantic) and Site 202-1241 (Pacific) were chosen at 1Ma intervals over the period 0.3-9.3Ma. Samples were washed and sieved <150µm. Splits of the sediment fraction were picked completely to obtain, where possible, at least 30 specimens each of planktic foraminifer species Globigerinoides sacculifer and Globorotalia tumida, on which outline analysis (Fourier) was performed. Sea surface and thermocline temperatures were reconstructed from palaeoenvironmental proxies (UK37' and Tex86H respectively).