7 resultados para Colleagues
em Publishing Network for Geoscientific
Resumo:
To estimate the kinematics of the SIRGAS reference frame, the Deutsches Geodätisches Forschungsinstitut (DGFI) as the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNNAC SIR), yearly computes a cumulative (multi-year) solution containing all available weekly solutions delivered by the SIRGAS analysis centres. These cumulative solutions include those models, standards, and strategies widely applied at the time in which they were computed and cover different time spans depending on the availability of the weekly solutions. This data set corresponds to the multi-year solution SIR11P01. It is based on the combination of the weekly normal equations covering the time span from 2000-01-02 (GPS week 1043) to 2011-04-16 (GPS week 1631), when the IGS08 reference frame was introduced. It refers to ITRF2008, epoch 2005.0 and contains 230 stations with 269 occupations. Its precision was estimated to be ±1.0 mm (horizontal) and ±2.4 mm (vertical) for the station positions, and ±0.7 mm/a (horizontal) and ±1.1 mm/a (vertical) for the constant velocities. Computation strategy and results are in detail described in Sánchez and Seitz (2011). The IGS RNAAC SIR computation of the SIRGAS reference frame is possible thanks to the active participation of many Latin American and Caribbean colleagues, who not only make the measurements of the stations available, but also operate SIRGAS analysis centres processing the observational data on a routine basis (more details in http://www.sirgas.org). The achievements of SIRGAS are a consequence of a successful international geodetic cooperation not only following and meeting concrete objectives, but also becoming a permanent and self-sustaining geodetic community to guarantee quality, reliability, and long-term stability of the SIRGAS reference frame. The SIRGAS activities are strongly supported by the International Association of Geodesy (IAG) and the Pan-American Institute for Geography and History (PAIGH). The IGS RNAAC SIR highly appreciates all this support.
Resumo:
Though much attention has been focused in recent years on the melting of ice from Greenland and Antarctica, nearly half of the ice volume currently being lost to the ocean is actually coming from other mountain glaciers and ice caps. Ice loss from a group of islands in northern Canada accounts for much of that volume. In a study published in April 2011 in the journal Nature, a team of researchers led by Alex Gardner of the University of Michigan found that land ice in both the northern and southern Canadian Arctic Archipelago has declined sharply. The maps above show ice loss from surface melting for the northern portion of the archipelago from 2004-2006 (left) and 2007-2009 (right). Blue indicates ice gain, and red indicates ice loss. In the six years studied, the Canadian Arctic Archipelago lost an average of approximately 61 gigatons of ice per year. (A gigaton is a billion tons of ice.) The research team also found the rate of ice loss was accelerating. From 2004 to 2006, the average mass loss was roughly 31 gigatons per year; from 2007 to 2009, the loss increased to 92 gigatons per year. Gardner and colleagues used three independent methods to assess ice mass, all of which showed the same trends. The team used a model to estimate the surface mass balance of ice and the amount of ice discharged. They also compiled and analyzed measurements from NASA's Ice, Cloud and Land Elevation Satellite (ICESat) to assess changes in the surface height of ice. Finally, they gathered observations from NASA's Gravity Recovery and Climate Experiment (GRACE) to determine changes in the gravity field in the region, an indicator of the amount of ice gained or lost. The Canadian Arctic Archipelago generally receives little precipitation, and the amount of snowfall changes little from year to year. But the rate of snow and ice melting varies considerably, so changes in ice mass come largely from changes in summertime melt. During the 2004 to 2009 study period, the Canadian Arctic Archipelago experienced four of its five warmest years since 1960, likely fueling the melting. Gardner notes that from 2001 to 2004, the sum of melting from all mountain glaciers and ice caps around the world (but not the Greenland and Antarctic ice sheets) contributed an estimated 1 millimeter per year to global sea level rise. Recent estimates suggest the Greenland and Antarctic ice sheets add another 1.3 millimeters per year to sea level. "This means 1 percent of the land ice volume-mountain glaciers and ice caps-account for about half of all ice loss to the world's oceans," Gardner said. "Most of the ice loss is coming from the Canadian Arctic Archipelago, Alaska, Patagonia, the Himalayas, and the smaller ice masses surrounding the main Greenland and Antarctic ice sheets."
Resumo:
Intensification of North Pacific Intermediate Water during the Younger Dryas and stadials of the last glacial episode has been advocated by Kennett and his colleagues based on studies of ventilation history in Santa Barbara Basin. Because Santa Barbara Basin is a semi-isolated marginal basin, this hypothesis requires testing in sequences on the upper continental margin facing the open-ocean of the Pacific. Ocean Drilling Program Site 1017 is located on the upper slope of southern California off Point Conception close to the entrance of Santa Barbara Basin, an ideal location to test the hypothesis of late Quaternary switching in intermediate waters. We examined chemical and mineral composition, sedimentary structures, and grain size of hemipelagic sediments representing the last 80 k.y. at this site to detect changes in behavior of intermediate waters. We describe distinct compositional and textual variations that appear to reflect changes in grain size in response to flow velocity fluctuations of bottom waters. Qualitative estimates of changes in degree of pyritization indicate better ventilation of bottom water during intervals of stronger bottom-water flow. Comparison between variations in the sediment parameters and the planktonic d18O record indicates intensified bottom-current activity during the Younger Dryas and stadials of marine isotope Stage 3. This result strongly supports the hypothesis of Kennett and his colleagues. Our investigation also suggests strong grain-size control on organic carbon content (and to less extent carbonate carbon content). This, in turn, suggests the possibility that organic carbon content of sediments, which is commonly used as an indicator of surface productivity, can be influenced by bottom currents.
Resumo:
Originally, we had planned to piston core at Site 595 in order to meet the sedimentologic and biostratigraphic objectives outlined in the introductory chapter. However, consultation with our colleagues, Thomas Jordan and John Orcutt on board Melville, indicated that coring near the ocean bottom seismometer (OBS) array around Hole 595B could alter the programmed signal to noise ratio above which teleseisms trigger recording in the OBSs. They requested that we core no closer than about 8 km from three OBSs nearest Hole 595B, and selected a target for us about that distance to the west. Since a new beacon was required at this distance, a new site number, 596, was designated. Briefly, we planned to obtain oriented hydraulic piston cores to the top of the cherts, then core through the cherts using the extended core barrel (XCB) to basement. With improved recovery, we hoped to reach the sediment/basalt contact, and thus obtain a reliable biostratigraphic determination of the basement age. We planned to obtain at least one core in basement, perhaps more, with time permitting. We planned no geophysical program for the hole.
Resumo:
In this monograph on the basis of materials obtained by the author and his colleagues in Arctic expeditions of 1991-2005 and of published data results of studies effect of aerosols on environmental conditions and marine sedimentation in the Arctic are summarizes. Processes of aeolian transport and transformation of sedimentary material from sources to places of its accumulation in bottom sediments are described. Results of this study can be used to assess current state of ecosystem of Arctic seas and as a background for evaluation of possible human impact on nature during exploration of mineral resources of the Arctic shelf. For oceanographers, geochemists, geoecologists.
Resumo:
As shown by the work of Dansgaard and his colleagues, climate oscillations of one or so millennia duration punctuate much of glacial section of the Greenland ice cores. These oscillations are characterized by 5°C air temperature changes, severalfold dust content changes and 50 ppm CO2 changes. Both the temperature and CO2 change are best explained by changes in the mode of operation of the ocean. In this paper we provide evidence which suggests that oscillations in surface water conditions of similar duration are present in the record from a deep sea core at 50°N. Based on this finding, we suggest that the Greenland climate changes are driven by oscillations in the salinity of the Atlantic Ocean which modulate the strength of the Atlantic's conveyor circulation.
Resumo:
The general knowledge of the hydrographic structure of the Southern Ocean is still rather incomplete since observations particularly in the ice covered regions are cumbersome to be carried out. But we know from the available information that thermohaline processes have large amplitudes and cover a wide range of scales in this part of the world ocean. The modification of water masses around Antarctica have indeed a worldwide impact, these processes ultimately determine the cold state of the present climate in the world ocean. We have converted efforts of the German and Russian polar research institutions to collect and validate the presently available temperature, salinity and oxygen data of the ocean south of 30°S latitude. We have carried out this work in spite of the fact that the hydrographic programme of the World Ocean Circulation Experiment (WOCE) will provide more new information in due time, but its contribution to the high latitudes of the Southern Ocean is quite sparse. The modified picture of the hydrographic structure of the Southern Ocean presented in this atlas may serve the oceanographic community in many ways and help to unravel the role of this ocean in the global climate system. This atlas could only be prepared with the altruistic assistance of many colleagues from various institutions worldwide who have provided us with their data and their advice. Their generous help is gratefully acknowledged. During two years scientists from the Arctic and Antarctic Research Institute in St. Petersburg and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven have cooperated in a fruitful way to establish the atlas and the archive of about 38749 validated hydrographic stations. We hope that both sources of information will be widely applied for future ocean studies and will serve as a reference state for global change considerations.