178 resultados para Chiroxiphia caudata
em Publishing Network for Geoscientific
Resumo:
Benthic foraminifers of the Coniacian-Santonian through the Paleocene were recovered from a continuous pelagic carbonate section from Hole 516F on the Rio Grande Rise. Sixty-five genera and 153 species have been identified, most of which have been reported from other localities. Bathyal depths are reflected in the benthic assemblages dominated by gavelinellids (Gavelinella beccariiformis, G. velascoensis), Nuttallides truempyi, and various gyroidinids and buliminids. Rapid subsidence during the Coniacian-Santonian from nearshore to upper to middle bathyal depths was followed by much reduced subsidence, with the Campanian-Paleocene interval accumulating at middle bathyal to lower bathyal depths. A census study based on detailed sampling reveals major changes in benthic faunal composition at the Cretaceous/Tertiary boundary transition. It was a time of rapid turnover, with the extinctions of numerous species and the introduction of many new species. Overall, species diversity decreases about 20%, and approximately one-third of latest Maestrichtian species do not survive to the end of the Cretaceous. This shift indicates a significant environmental change in the deep sea, the precise nature of which is not apparent from the foraminifers or their enclosing sediments.
Resumo:
Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyze a ~4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemistical, geochronological, micropaleontological (ostracoda, testate amoeba) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for Central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP, which drained catastrophically in spring 2005. The present study emphasizes that Arctic lake systems and periglacial landscapes are highly dynamic and permafrost formation as well as degradation in Central Beringia was controlled by regional to global climate patterns and as well as by local disturbances.
Resumo:
Sediment core M23414 from the Rockall Plateau (North Atlantic) covering the last two climatic cycles, marine isotope stages (MIS) 7 to 1, was investigated for glacial-interglacial variations in the deep-sea benthic ostracode fauna. A highly diversified ostracode fauna including 98 species was found. Two climate-related assemblages were identified, associated with interglacial and peak glacial periods, respectively. The 'interglacial' group occurs during the end of MIS 7, 5 and 1 and is composed of the genera Henryhowella, Pelecocythere, Echinocythereis, Cytherella, Bradleya, Aversovalva and Eucytherura. The 'glacial' group consists of the genera Acetabulastoma (which is known as 'sea ice indicator' in the modern Arctic Ocean), Polycope, Bythoceratina, ?Rhombobythere, and some species possibly belonging to the genus Pseudocythere and is found during MIS 6, 4 and 2. These longer-term variations within the ostracode fauna seem related to the particular glacial and interglacial climate conditions that affected both deep-water production as well as primary production in the surface waters. However, a detailed comparison of ostracode abundances with the occurrence of events marked by increased ice-rafted debris reveals also much shorter-term climate related changes in the ostracode fauna. Thus, the temporal fluctuations within ostracode assemblages reflect long- and short-term alterations of the deep-sea environment that are clearly linked to climate changes.
Resumo:
The first marine incursion of the incipient North Atlantic Ocean is recorded in the uppermost Triassic to Lower Jurassic sequence of DSDP Site 547 off central Morocco. A lithologic change from continental red beds below to slope breccias and hemipelagic carbonates above indicates that a carbonate ramp was probably established by Sinemurian time along the Moroccan continental margin and that subsidence in the adjacent basin was rapid in the early phases of continental rift. Foraminifers recovered from the Liassic (Sinemurian-Pliensbachian) basinal deposits are diverse and well preserved. The faunas are compositionally similar to contemporaneous neritic assemblages of Europe and the Grand Banks of Newfoundland. The Middle Jurassic in Hole 547B is characterized by regressive deposits that are poor in foraminifers. The major Late Jurassic "Atlantic" transgression is again represented by basinal deposits consisting of limestone breccias and pelagic carbonates. Foraminifers recovered from this interval are transitional between Late Jurassic assemblages reported from deep-sea deposits in the North Atlantic and typical Late Jurassic neritic assemblages of Europe. The Late Jurassic assemblages of Hole 547B are primarily dominated by nodosariids and spirillinids with moderate abundances of simple arenaceous forms. Nonreticulate epistominids occur very rarely in the Upper Jurassic of Hole 547B. It is tentatively suggested that these represent upper bathyal assemblages.