258 resultados para Assemblages of marine sponges
em Publishing Network for Geoscientific
Resumo:
Calcareous nannofossil and planktic foraminiferal assemblages from ODP Hole 1210A in the northwestern Pacific Ocean were used to reconstruct surface-water conditions for the past 500 kyr. Stratigraphic control was provided by calcareous nannofossil events that are thought to be synchronous over a broad range of latitudes. Calcareous nannofossil and planktic foraminiferal assemblages and abundance patterns indicate the unlikelihood of long term (Milankovitch-scale) latitudinal shifts of the Kuroshio Extension over the last 500 kyr and illustrate two successive surface water-mass states, one that prevailed prior to 300 ka and one that existed after 300 ka. The relative abundance of very small placoliths and the absolute abundance of the upper photic zone (UPZ) coccolith species decrease abruptly at approximately 300 ka. The relative abundance of the lower photic zone (LPZ) species Florisphaera profunda greatly increases at the same time, although intervals during which the relative abundance of this taxon is very low or absent also occur prior to 300 ka. The absolute abundance of planktic foraminifera gradually increased after the 300-ka boundary, including peaks of Globoconella inflata. These assemblage and abundance changes suggest significant modifications to the surface water-mass structure. Surface water was weakly stratified prior to 300 ka, but alternated between intensely stratified and vertically mixed after 300 ka. Changes in the surface water-mass structure suggest an intensification of the East Asian summer and winter monsoon after 300 ka.
Resumo:
High-nutrient tropical carbonate systems are known to produce sediments that, in terms of skeletal composition, are reminiscent of their extra-tropical counterparts. Such carbonate systems and associated carbonate grain assemblages in the tropics are rare in the present-day world. Nonetheless, it is crucial to gain a better understanding of those ecosystems, including their drivers and players because such settings potentially represent models for ancient depositional systems as well as for predicted future environmental conditions. One of the modern occurrences of eutrophic tropical carbonate systems is the northern Mauritanian Shelf. The marine environment is characterized by an eastern boundary upwelling system that pushes cool and nutrient-rich intermediate waters onto a wide epicontinental platform (Golfe d'Arguin) where the waters warm up to tropical temperatures. The resulting facies is mixed carbonate-siliciclastic with a dominant foramol association grading into bimol and barnamol grain assemblages in the shallowest areas forming the Banc d'Arguin. Besides this cool water-related heterozoan association, the carbonate sediment is characterized by tropical molluskan species, while chlorozoan biota (e.g., corals and algal symbiont-bearing foraminifers) are entirely absent. We here present a first comprehensive facies analysis of this model example of eutrophic tropical carbonates. Furthermore, we reconstruct the loci of carbonate production and provide a conclusive depositional model of the Banc d'Arguin that received little attention to date due to its poorly accessible nature.
Resumo:
The present study on ODP Leg 151 Hole 907A combines a detailed analysis of marine palynomorphs (dinoflagellate cysts, prasinophytes, and acritarchs) and a low-resolution alkenone-based sea-surface temperature (SST) record for the interval between 14.5 and 2.5 Ma, and allows to investigate the relationship between palynomorph assemblages and the paleoenvironmental evolution of the Iceland Sea. A high marine productivity is indicated in the Middle Miocene, and palynomorphs and SSTs both mirror the subsequent long-term Neogene climate deterioration. The diverse Middle Miocene palynomorph assemblages clearly diminish towards the impoverished assemblages of the Late Pliocene; parallel with a somewhat gradual decrease of SSTs being as high as 20 °C at ~13.5 Ma to around 8 °C at ~3 Ma. Superimposed, palynomorph assemblages not only reflect Middle to Late Miocene climate variability partly coinciding with the short-lived global Miocene isotope events (Mi-events), but also the initiation of a proto-thermohaline circulation across the Middle Miocene Climate Transition, which led to increased meridionality in the Nordic Seas. Last occurrences of species cluster during three events in the Late Miocene to Early Pliocene and are ascribed to the progressive strengthening and freshening of the proto-East Greenland Current towards modern conditions. A significant high latitude cooling between 6.5 and 6 Ma is depicted by the supraregional "Decahedrella event" coeval with lowest Miocene productivity and a SST decline. In the Early Pliocene, a transient warming is accompanied by surface water stratification and increased productivity that likely reflects a high latitude response to the global biogenic bloom. The succeeding crash in palynomorph accumulation, and a subsequent interval virtually barren of marine palynomorphs may be attributed to enhanced bottom water oxygenation and substantial sea ice cover, and indicates that conditions seriously affecting marine productivity in the Iceland Sea were already established well before the marked expansion of the Greenland Ice Sheet at 3.3 Ma.
Resumo:
The calcareous nannofossils of the Cenomanian/Turonian boundary interval of Sites 1258 and 1260 (Ocean Drilling Program Leg 207) have been studied in order to understand the depositional environment during Oceanic Anoxic Event 2 (OAE2) in the equatorial Atlantic. Nannofossil assemblages show a significant change in relative abundances during the positive d13Corg excursion interval. The strong increase of the high productivity indicator Zeugrhabdotus erectus and the simultaneous decrease of the oligotrophic taxa Watznaueria barnesiae and Watznaueria fossacincta are indicative of enhanced fertility. The decrease of Eprolithus floralis may be attributed to the surface-water temperature increase during OAE2, which is, however, not very significant (~2-3 °C), as suggested by published TEX86 data. It seems more likely that the decrease of E. floralis during OAE2 was evoked by the breakdown of water-column stratification, indicating it as a deep-dwelling species, which prefers stratified waters with a deep nutricline. Prediscosphaera spp. and Retecapsa ficula, which show a significant increase in relative abundances during OAE2, seem to prefer eutrophic environments, while Amphizygus brooksii and Zeugrhabdotus noeliae lower surface-water fertility. Gartnerago segmentatum, Broinsonia spp., Watznaueria biporta, and Seribiscutum gaultensis decrease in abundances during OAE2. It is not clear if they preferred an oligotrophic environment, cooler surface-waters, or if they were inhabitants of the lower photic zone. Published geochemical data suggest that enhanced fertility and higher temperatures during OAE2 may have been caused by submarine volcanic activity through the release of biolimiting micronutrients into the ocean and carbon dioxide into the atmosphere. The breakdown of water-column stratification may have increased further nutrient availability.
Resumo:
Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.
Resumo:
Downcore cyclic variation in high-resolution nannofossil abundance records from mid-Pliocene equatorial Atlantic ODP Sites 662 and 926 demonstrate the direct response by several Pliocene taxa (notably Discoaster, Sphenolithus and Florisphaera profunda) to orbitally forced climatic variation. In particular, these records display strong obliquity and precessional signals reflecting primarily high latitude, Southern hemisphere changes influencing upwelling intensity and local low-latitude, insolation-driven climatic changes (via the productivity and/or turbidity influence of Amazon-sourced terrigenous material) at Sites 622 and 926 respectively. In seasonal studies of coccolithophorid assemblages, only part of the variation observed can be explained by abiotic processes, so it is perhaps not surprising that in this study few Pliocene nannofossil taxa demonstrate significant correlations with each other or with physical environmental parameters. Only some variance in nannofossil abundances can be explained by the primary controls of temperature and productivity. The rest is attributed to nonlinear responses to climatic changes; biotic processes such as grazing, predation, viral infection and competition, and/or, abiotic factors for which there is no readily available proxy (e.g. salinity). The lack of strong, consistent intra- and inter-relationships of the nannoflora and the environment reflects an ecologically complex, differentiated original community producing a complex integrated signal transmitted into the fossil record.
Resumo:
Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our ~87.8-92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.
Resumo:
Two cores, one from the Beaufort Sea Slope at 1000 m water depth (core 750) and one from the Amundsen Gulf at 426 m (core 124), were collected to help determine paleo-ice cover in the Holocene and late glacial of this area. Site 750 is particularly sensitive to changes in paleo-ice cover because it rests beneath the present ice margin of the permanent Arctic ice pack. Core 124 was sampled just in front of the former glacier that moved out into the Amundsen Gulf and started to recede about 13 ka B.P. Both cores have a strong occurrence of calcareous foraminifera in the upper few centimeters, but these disappear throughout most of the Holocene, suggesting more open water in that time period than present. In the sediments representing the end of the last glacial period (dated at ~11,500-14,000 calibrated years B.P. (cal B.P.)) a calcareous fauna with an abundant planktic foraminiferal fauna suggests a return to almost permanent ice cover, much like the central Arctic today. Together with the foraminifera there was also abundant ice-rafted debris (IRD) in both cores between 12,000 cal B.P. and ~14,000 cal B.P., but those units are of different ages between cores, suggesting different events. The IRD in both cores appears to have the same magnetic and chemical signals, but their origins cannot be determined exactly until clay mineralogy is completed. There is abundant organic debris in both cores below the IRD units: the organics in core 750 are very diffuse and not visually identifiable, but the organic material in core 124 is clearly identifiable with terrestrial root fragments; these are 14C dated at over 37,000 years B.P. This is a marine unit as it also has glacial front foraminifera in the sediment with the organic debris that must have been originating from subglacial streams. The seismic and multibeam data both indicate glaciers did not cross the core 124 site.
Resumo:
We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.
Resumo:
A total of 145 samples were analyzed for palynology, and all were found to be productive. Residues are dominated by pollen, terrestrial spores, and land plant tissues. Marine palynomorphs occur in all samples, which allowed us to recognize five Miocene dinocyst assemblage zones. Dinocyst assemblages indicate cool-water conditions and suggest a neritic rather than fully oceanic environment, with not only North Atlantic and Norwegian Sea affinities, but also containing both notable protoperidiniacean and possible endemic elements. Dinocyst assemblages indicate an early Miocene age for the bottom of Hole 645E and an age no younger than early late Miocene (Sample 105-645E-24R, CC) near the top of the interval studied. These age assignments provide an estimated initiation of ice rafting in Baffin Bay at between 7.4 and 9.5 Ma. Increased terrigenous influx and apparent disappearance of certain dinocyst taxa occur in the middle to late Miocene and may be related to oceanographic changes or climatic deterioration. Spores and pollen indicate a climate that varied within a temperate regime during the early and middle to early late Miocene, followed by climatic deterioration. Four new dinocyst species are described: Batiacasphaera gemmata, Impletosphaeridium prolatum, Operculodinium vacuolatum, and Selenopemphix brevispinosa. The acritarch genus Cyclopsiella Drugg and Loeblich is emended, and two new combinations have been created: Cyclopsiella granosa (Matsuoka) and Cyclopsiella? laevigata (Chateauneuf). Cyclopsiella granosa (Matsuoka) n. comb. is considered a subjective junior synonym of Cyclopsiella granulata He and Li. Ascostomocystis granulatus Chateauneuf has been provisionally allocated to Cyclopsiella and renamed Cyclopsiella? chateauneufii. Two new acritarch species are described: Cyclopsiella spiculosa and Cymatiosphaera! baffinensis.
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB 9503-5 retrieved from the mud-belt ( 50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term palaeoceanographic and palaeoenvironmental changes in subtropical NW Africa during the time interval from ca. 4200 to 1200 cal yr BP. Our study emphasizes significant coeval changes in continental and oceanic environments in and off Senegal and shows that initial dry conditions were followed by a strong and rapid increase in humidity between ca. 2900 and 2500 cal yr BP. After ca. 2500 cal yr BP, the environment slowly became drier again as indicated by slight increases in Sahelian savannah and desert elements in the pollen record. Around ca. 2200 cal yr BP, this relatively dry period ended with periodic pulses of high terrigenous contributions and strong fluctuations in fern spore and river plume dinoflagellate cyst percentages as well as in the fluxes of pollen, dinoflagellate cysts, fresh-water algae and plant cuticles, suggesting "episodic flash flood" events of the Senegal River. The driest phase developed after about 2100 cal yr BP.