3 resultados para Alpha-cluster model
em Publishing Network for Geoscientific
Resumo:
Multivariate analyses of latest Pliocene through Holocene benthic foraminifera from 61 samples from Deep-Sea Drilling Project (DSDP) Site 214, eastem Indian Ocean were carried out. The 46 highest ranked species were used in R-mode factor analysis which has enabled to the identification of three environmentally significant assemblages at Site 214. Assemblage 1 is characterized by Uvigerina hispido-costata, Osangularia culter , Gavelinopsis lobatulus, Cibicides wuellerstorfi and Karreriella baccata as principal species. This assemblage is inferred to reflect high-energy, well-oxygenated and probably low-organic carbon deep-sea environment at Site 214. Assemblage 2 is defined principally by Globocassidulina pacifica and U. proboscidea and is considered to indicate an organic carbon-rich environment which resulted from high surface productivity irrespective of dissolved oxygen content. Assemblage 3 is marked by Oridorsalis umbonatus, Textularia lythostrota, Hoeglundina elegans, Pyrgo murrhina, and Pullenia quinqueloba as principal species. This assemblage is inferred to indicate a low-organic carbon environment with high pore water oxygen concentration leading to better preservation of deep-sea sediments.
Resumo:
Five frequently-used models were chosen and evaluated to calculate the viscosity of the mixed oil. Totally twenty mixed oil samples were prepared with different ratios of light to crude oil from different oil wells but the same oil field. The viscosities of the mixtures under the same shear rates of 10 s**-1 were measured using a rotation viscometer at the temperatures ranging from 30°C to 120°C. After comparing all of the experimental data with the corresponding model values, the best one of the five models for this oil field was determined. Using the experimental data, one model with a better accuracy than the existing models was developed to calculate the viscosity of mixed oils. Another model was derived to predict the viscosity of mixed oils at different temperatures and different values of mixing ratio of light to heavy oil.
Resumo:
The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.