6 resultados para ADAPTED ANALYTICAL MODEL
em Publishing Network for Geoscientific
Resumo:
It is well established that orbital scale sea-level changes generated larger transport of sediments into the deep-sea during the last glacial maximum than the Holocene. However, the response of sedimentary processes to abrupt millennial-scale climate variability is rather unknown. Frequency of distal turbidites and amounts of advected detrital carbonate are estimated off the Lisbon-Setúbal canyons, within a chronostratigraphy based on radiometric ages, oxygen isotopes and paleomagnetic key global anomalies. We found that: 1) Higher frequency of turbidites concurred with Northern Hemisphere coldest temperatures (Greenland Stadials [GS], including Heinrich [H] events). But more than that, an escalating frequency of turbidites starts with the onset of global sea-level rising (and warming in Antarctica) and culminates during H events, at the time when rising is still in its early-mid stage, and the Atlantic Meridional Overturning Circulation (AMOC) is re-starting. This short time span coincides with maximum gradients of ocean surface and bottom temperatures between GS and Antarctic warmings (Antarctic Isotope Maximum; AIM 17, 14, 12, 8, 4, 2) and rapid sea-level rises. 2) Trigger of turbidity currents is not the only sedimentary process responding to millennial variability; land-detrital carbonate (with a very negative bulk d18O signature) enters the deep-sea by density-driven slope lateral advection, accordingly during GS. 3) Possible mechanisms to create slope instability on the Portuguese continental margin are sea-level variations as small as 20 m, and slope friction by rapid deep and intermediate re-accommodation of water masses circulation. 4) Common forcing mechanisms appear to drive slope instability at both millennial and orbital scales.
Resumo:
We measured the relationship between CO2-induced seawater acidification, photo-physiological performance and intracellular pH (pHi) in a model cnidarian-dinoflagellate symbiosis - the sea anemone Aiptasia sp. -under ambient (289.94 ± 12.54 µatm), intermediate (687.40 ± 25.10 µatm) and high (1459.92 ± 65.51 µatm) CO2 conditions. These treatments represented current CO2 levels, in addition to CO2 stabilisation scenarios IV and VI provided by the Intergovernmental Panel on Climate Change (IPCC). Anemones were exposed to each treatment for two months and sampled at regular intervals. At each time-point we measured a series of physiological responses: maximum dark-adapted fluorescent yield of PSII (Fv/Fm), gross photosynthetic rate, respiration rate, symbiont population density, and light-adapted pHi of both the dinoflagellate symbiont and isolated host anemone cell. We observed increases in all but one photo-physiological parameter (Pgross:R ratio). At the cellular level, increases in light-adapted symbiont pHi were observed under both intermediate and high CO2 treatments, relative to control conditions (pHi 7.35 and 7.46 versus pHi 7.25, respectively). The response of light-adapted host pHi was more complex, however, with no change observed under the intermediate CO2 treatment, but a 0.3 pH-unit increase under the high CO2 treatment (pHi 7.19 and 7.48, respectively). This difference is likely a result of a disproportionate increase in photosynthesis relative to respiration at the higher CO2 concentration. Our results suggest that, rather than causing cellular acidosis, the addition of CO2 will enhance photosynthetic performance, enabling both the symbiont and host cell to withstand predicted ocean acidification scenarios.
Resumo:
State-of-the-art process-based models have shown to be applicable to the simulation and prediction of coastal morphodynamics. On annual to decadal temporal scales, these models may show limitations in reproducing complex natural morphological evolution patterns, such as the movement of bars and tidal channels, e.g. the observed decadal migration of the Medem Channel in the Elbe Estuary, German Bight. Here a morphodynamic model is shown to simulate the hydrodynamics and sediment budgets of the domain to some extent, but fails to adequately reproduce the pronounced channel migration, due to the insufficient implementation of bank erosion processes. In order to allow for long-term simulations of the domain, a nudging method has been introduced to update the model-predicted bathymetries with observations. The model-predicted bathymetry is nudged towards true states in annual time steps. Sensitivity analysis of a user-defined correlation length scale, for the definition of the background error covariance matrix during the nudging procedure, suggests that the optimal error correlation length is similar to the grid cell size, here 80-90 m. Additionally, spatially heterogeneous correlation lengths produce more realistic channel depths than do spatially homogeneous correlation lengths. Consecutive application of the nudging method compensates for the (stand-alone) model prediction errors and corrects the channel migration pattern, with a Brier skill score of 0.78. The proposed nudging method in this study serves as an analytical approach to update model predictions towards a predefined 'true' state for the spatiotemporal interpolation of incomplete morphological data in long-term simulations.
Resumo:
There has been much recent interest in the origin of silicic magmas at spreading centres away from any possible influence of continental crust. Here we present major and trace element data for 29 glasses (and 55 whole-rocks) sampled from a 40 km segment of the South East Rift in the Manus Basin that span the full compositional continuum from basalt to rhyolite (50-75 wt % SiO2). The glass data are accompanied by Sr-Nd-Pb, O and U-Th-Ra isotope data for selected samples. These overlap the ranges for published data from this part of the Manus Basin. Limited increases in Cl/K ratios with increasing SiO2, La-SiO2 and Yb-SiO2 relationships, and the oxygen isotope data rule out models in which the more silicic lavas result from partial melting of altered oceanic crust or altered oceanic gabbros. Rather, the data form a coherent array that is suggestive of closed-system fractional crystallization and this is well simulated by MELTS models run at 0.2 GPa and QFM (quartz-fayalite-magnetite buffer) with 1 wt % H2O, using a parental magma chosen from the basaltic glasses. Although some assimilation of altered oceanic crust or gabbro cannot be completely ruled out, there is no evidence that this plays an important role in the origin of the silicic lavas. The U-series disequilibria are dominated by 238U and 226Ra excesses that limit the timescale of differentiation to less than a few millennia. Overall, the data point to rapid evolution in relatively small magma lenses located near the base of thick oceanic crust; we speculate that this was coupled with relatively low rates of basaltic recharge. A similar model may be applicable to the generation of silicic magmas elsewhere in the ocean basins.
Resumo:
Thermal reaction norms for growth rates of six Emiliania huxleyi isolates originating from the central Atlantic (Azores, Portugal) and five isolates from the coastal North Atlantic (Bergen, Norway) were assessed. We used the template mode of variation model to decompose variations in growth rates into modes of biological interest: vertical shift, horizontal shift, and generalist-specialist variation. In line with the actual habitat conditions, isolates from Bergen (Bergen population) grew well at lower temperatures, and isolates from the Azores (Azores population) performed better at higher temperatures. The optimum growth temperature of the Azores population was significantly higher than that of the Bergen population. Neutral genetic differentiation was found between populations by microsatellite analysis. These findings indicate that E. huxleyi populations are adapted to local temperature regimes. Next to between-population variation, we also found variation within populations. Genotype-by-environment interactions resulted in the most pronounced phenotypic differences when isolates were exposed to temperatures outside the range they naturally encounter. Variation in thermal reaction norms between and within populations emphasizes the importance of using more than one isolate when studying the consequences of global change on marine phytoplankton. Phenotypic plasticity and standing genetic variation will be important in determining the potential of natural E. huxleyi populations to cope with global climate change.