363 resultados para 107-651

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A most significant finding of the ODP Leg 107 drilling campaign was the recovery of at least 56 distinct sapropel intervals in upper Pliocene to Pleistocene sediments of six sites drilled in the Tyrrhenian Sea. Except for 3 repots of disturbed organic-rich sediments - recovered in Core 201 of the Swedish Deep-Sea Expedition, in Core 2R-1,107 cm of Site 373 (Leg 13 DSDP) and at Site 373, Core 1-2,O-5 cm of DSDP Leg 42A - sapropels had previously only been described from the eastern Mediterranean and the Black Sea. Scientific deep-sea drilling in the Tyrrhenian Sea during DSDP Legs 13 and 42A apparently missed most of these deposits due to spot coring and rotary drilling techniques; high sedimentation rates may have precluded recovery by conventional gravity coring devices. The recovery of multiple layers of sapropels and sapropelic sediments in the Tyrrhenian Sea demonstrates that oceanographic conditions conducive to sapropel formation were not confined to the Black Sea and eastern Mediterranean, but occurred sporadically and possibly simultaneously in the entire Mediterranean during the Pliocene and Pleistocene. In the light of this finding, previous models of sapropel genesis may need reconsideration. In this paper, we present some initial data on the Tyrrhenian sapropels and suggest some implications of their massive occurrence in the western Mediterranean realm. We end by outlining possible causes for deposition of sapropels in an attempt to revive the interest in sapropels and their paleoceanographic significance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During ODP Leg 107, the basement of the Tyrrhenian Sea was drilled at Site 650, located in the Marsili basin, and at Sites 651 and 655, both located in the Vavilov basin. In addition, a lava flow was drilled at Site 654 on the Sardinia rifted margin. Mineral and whole rock major and trace element chemistry, including rare earth element (REE) and Sr and Nd isotopic ratios, were determined in samples of these rocks. Site 654 lava was sampled within uppermost Pliocene postrift sediments. This lava is a basaltic andesite of intraplate affinity, and is analogous to some Plio-Pleistocene tholeiitic lavas from Sardinia. Site 650 basalts, drilled beneath 1.7-1.9-Ma-old basal sediment, are strongly altered and vesicular suggesting a rapid subsidence of the Marsili basin. Based on incompatible trace elements, these basalts show calc-alkaline affinity like some products of the Marsili Seamount and the Eolian arc. The basement of the two sites drilled within Vavilov basin shows contrasting petrologies. Site 655, located along the Gortani ridge in the western part of the basin, drilled a 116-m-thick sequence of basalt flows beneath 3.4-3.6-Ma-old basal sediments. These basalts are chemically relatively homogeneous and show affinity to transitional MORB. Four units consisting of slightly differentiated basaltic lavas, have been identified. Site 655 basalts are geochemically similar to the high Ti lavas from DSDP Leg 42, Site 373 (Vavilov Basin). The basement at Site 651, overlain by 40 m of metalliferous dolostone covered by fossiliferous sediments with an age of 2 Ma, consists of two basalt units separated by a dolerite-albitite intrusive body; serpentinized harzburgites were drilled for 30 m at the base of the hole. The two basalt units of Site 651 are distinct petrochemically, though both show incompatible elements affinity with high-K calc-alkaline/calc-alkaline magmas from Eolian arc. The cpx chemistry and high K/Na ratio of the lower unit lavas suggest a weak alkaline tendency of potassic lineage. Leg 107 basement rock data, together with data from DSDP Site 373 and from dredged samples, indicate that the deepest basins of the central Tyrrhenian Sea are underlain by a complex back-arc basin crust produced by magmas with incompatible element affinities to transitional MORB (Site 655 and DSDP Site 373), and to calc-alkaline and high-K calc-alkaline converging plate margin basalts (Sites 650 and 651). This petrogenetic complexity is in accordance with the back-arc setting of the Vavilov and Marsili basins. Other back-arc basin basalts, particularly those from ensialic basins such as the Bransfield Strait (Antarctica), show a comparable petrogenetic complexity (cf., Sounders and Tarney, 1984).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apart from Site 650, core disturbance due to rotary drilling severely compromised the quality of the magnetostratigraphic data obtained from Leg 107 sediments. The correlation of polarity zones to the geomagnetic polarity time scale cannot be made solely on the basis of pattern fit. The proposed correlations are consistent between sites, and this consistency is constrained by the biostratigraphic datums. The resulting biomagnetostratigraphic correlations are reviewed in the synthesis section of this volume. The purpose of this paper is to document the magnetic stratigraphies, and present the preferred correlation to the geomagnetic reversal time scale. Four implications of the proposed correlations are: (1) The Mio-Pliocene boundary occurs in the lowest reversed interval of the Gilbert (Chron 3r) at about 4.9 Ma. (2) The thick pre-Pliocene lacustrine sequence recovered at Site 652 appears to have been deposited entirely within a single reversed polarity chron (Chron 3r). (3) The balatino-type gypsum recovered at Site 654 was also deposited entirely within this polarity chron (Chron 3r). (4) The Tortonian-Messinian boundary occurs within a normal polarity zone which is probably correlative to Chron 6 (Chron 3B) giving a boundary age of about 6.4 Ma.