344 resultados para 0.9 per mil were added

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in the contribution of North Atlantic Deep Water (NADW), relative to North Pacific Deep Water (NPDW), to the Southern Ocean, are assessed by comparing delta13C records from the mid-depth North Atlantic, deep Southern Ocean, and deep equatorial Pacific Ocean. In general, the relative contribution of NADW was greater during interglaciations than glaciations of the past 550,000 years. An increase in the NADW flux to the Southern Ocean since the last glaciation was proposed to have resulted in higher atmospheric CO2 in the Holocene (Broecker and Peng, 1989, doi:10.1029/GB003i003p00215). Glacial-interglacial variations in the proportion of NADW in the Southern Ocean may have also influenced atmospheric CO2 levels over the past 550,000 years. The greatest relative flux of NADW to the Southern Ocean occurred during interglacial stage 11. Faunal data suggest that the North Atlantic polar front and southern Indian Ocean subtropical convergence zone were located farthest poleward during stage 11. Warmth in these locations and a strong southward flux of NADW during stage 11 may be causally linked by the NADW formation process/warm water return route (Gordon, 1986, doi:10.1029/JC091iC04p05037). Time series analysis indicates that delta13C variations in the deep Southern Ocean occur at the same frequencies as the Earth's orbital variations and are coherent and in phase with delta18O. At most, 50% of the glacial-interglacial delta13C amplitude in the Southern Ocean is due changes in the contribution of NADW. The remainder is probably due to mean ocean delta13C changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon and oxygen isotope analyses were conducted on well-preserved planktonic and benthic foraminifers from a continuous middle Eocene to Oligocene sequence at Ocean Drilling Program (ODP) Site 748 on the Kerguelen Plateau. Benthic foraminifer d18O values show a 1.0 per mil increase through the middle and upper Eocene, followed by a rapid 1.2 per mil increase in the lowermost Oligocene (35.5 Ma). Surface-dwelling planktonic foraminifer d18O values increase in the lowermost Oligocene, but only by 0.6 per mil whereas intermediate-depth planktonic foraminifers show an increase of about l.0 per mil. Benthic foraminifer d13C values increase by 0.9 per mil in the lowermost Oligocene at precisely the same time as the large d18O increase, whereas planktonic foraminifer d13C values show little or no change. Site 748 oxygen isotope and paleontological records suggest that southern Indian Ocean surface and intermediate waters underwent significant cooling from the early to late Eocene. The rapid 1.2 per mil oxygen isotope increase recorded by benthic foraminifers just above the Eocene/Oligocene boundary represents the ubiquitous early Oligocene d18O event. The shift here is unique, however, as it coincided with the sudden appearance of ice-rafted debris (IRD), providing the first direct link between Antarctic glacial activity and the earliest Oligocene d18O increase. The d18O increase caused by the ice-volume change in the early Oligocene is constrained by (1) related changes in the planktonic to benthic foraminifer d18O gradient at Site 748 and (2) comparisons of late Eocene and early Oligocene planktonic foraminifer d18Ovalues from various latitudes. Both of these records indicate that 0.3 per mil to 0.4 per mil of the early Oligocene d18O increase was ice-volume related.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mid-Pleistocene transition (MPT) was the time when quasi-periodic (? 100 kyr), high-amplitude glacial variability developed in the absence of any significant change in the character of orbital forcing, leading to the establishment of the characteristic pattern of late Pleistocene climate variability. It has long been known that the interval around 900 ka stands out as a critical point of the MPT, when major glaciations started occurring most notably in the northern hemisphere. Here we examine the record of climatic conditions during this significant interval, using high-resolution stable isotope records from benthic and planktonic foraminifera from a sediment core in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313). We have considered the time interval from late in Marine Isotope Stage (MIS) 23 to MIS 20 (910 to 790 ka). Our data indicate that interglacial MIS 21 was a climatically unstable period and was broken into four interstadial periods, which have been identified and correlated across the North Atlantic region. These extra peaks tend to contradict previous studies that interpreted the MIS 21 variability as consisting essentially of a linear response to cyclical changes in orbital parameters. Cooling events in the surface record during MIS 21 were associated with low benthic carbon isotope excursions, suggesting a coupling between surface temperature changes and the strength of the Atlantic meridional overturning circulation. Time series analysis performed on the whole interval indicates that benthic and planktonic oxygen isotopes have significant concentrations of spectral power centered on periods of 10.7 kyr and 6 kyr, which is in agreement with the second and forth harmonic of precession. The excellent correspondence between the foraminifera d18O records and insolation variations at the Equator in March and September suggests that a mechanism related to low-latitude precession variations, advected to the high latitudes by tropical convective processes, might have generated such a response. This scenario accounts for the presence of oscillations at frequencies equal to precession harmonics at Site U1313, as well as the occurrence of higher amplitude oscillations between the MIS22/21 transition and most of MIS 21, times of enhanced insolation variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotopic data were produced on the benthic foraminiferal taxa Cibicidoides and Planulina from 25 new piston cores, gravity cores, and multicores from the Brazil margin. The cores span water depths from about 400 to 3000 m and intersect the major water masses in this region. These new data fill a critical gap in the South Atlantic Ocean and provide the motivation for updating the classic glacial western Atlantic d13C transect of Duplessy et al. (1988). The distribution of 13C of SumCO2 requires the presence of three distinct water masses in the glacial Atlantic Ocean: a shallow (~1000 m), southern source water mass with an end-member d13C value of about 0.3-0.5 per mil VPDB, a middepth (~1500 m), northern source water mass with an end-member value of about 1.5 per mil, and a deep (>2000 m), southern source water with an end-member value of less than -0.2 per mil, and perhaps as low as the -0.9 per mil values observed in the South Atlantic sector of the Southern Ocean (Ninnemann and Charles, 2002, doi:10.1016/S0012-821X(02)00708-2). The origins of the water masses are supported by the meridional gradients in benthic foraminiferal d18O. A revised glacial section of deep water d13C documents the positions and gradients among these end-member intermediate and deep water masses. The large property gradients in the presence of strong vertical mixing can only be maintained by a vigorous overturning circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between planktonic and benthic foraminiferal stable-isotope values and oceanographic conditions and factors controlling isotopic variations are discussed on the basis of oxygen and carbon isotopic analyses of 192 modern surface and Last Glacial Maximum (LGM) samples from the South China Sea (SCS). The harmonic variation of benthic delta18O in surface sediments with water depth and temperature implies that the temperature is the main factor influencing benthic delta18O variations. Planktonic delta18O fluctuates with sea surface temperature (SST) and salinity (SSS). The N-S temperature gradient results in planktonic delta18O decreasing from the northeast to the south. Cool, saline waters driven by the winter monsoon are interpreted to have been responsible for the high delta18O values in the northeast SCS. The East Asian monsoons not only bring nutrients into the South China Sea and maintain high nutrient concentration levels at the southwestern and northeastern ends, which cause depleted delta13C both in planktonic (surface) and benthic (bottom) samples but also reduce planktonic/benthic delta18O differences. The distribution of delta18O and delta13C in the surface and LGM samples are strikingly similar, indicating that the impact of SST and SSS has been maintained, and nutrient inputs, mainly from the northeastern and southwestern ends, have been controlled by monsoons since the LGM. Comparisons of the modern and LGM delta18O indicate a difference of about 3.6 °C in bottom-water temperature and a large surface-to-bottom temperature gradient during the LGM as compared to today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a 15 kyr sea surface temperature (SST) record for a high sedimentation rate core (KNR51-29GGC) from the Feni Drift off of Ireland, based on an organic geochemical technique for paleotemperature estimation, U37 K'. We compare the U37 K' temperature record to planktonic foraminiferal delta18O and foraminiferal assemblage SST estimates from the same sample horizons. U37 K' gives SST estimates of 13°C for the early deglacial and 18°C for the Holocene and Recent, whereas assemblages give estimates of 9°C and 13°C, respectively. As in nearby core V23-81, we find Ash Zone 1, the Younger Dryas increase in Neogloboquadrina pachyderma sinistral abundance, and maximum abundance of this species during glaciation. N. pachyderma dextral oxygen isotopic analyses have a late glacial to interglacial range of 1.5 per mil. A reduction of about 1 per mil in delta18O occurred at about 12 ka, whereas U37 K' and the foraminiferal fauna indicate a 2°C warming. This implies a 0.9 per mil salinity effect on delta18O which we attribute to meltwater freshening. All three parameters indicate cooling during the Younger Dryas. U37 K' SST estimates show that the major shift from deglacial to interglacial temperatures occurred after the Younger Dryas in termination 1b, in contrast to the assemblage data, which show this jump in SST at the end of the glaciation during termination Ia. Differences between the two SST estimators, which may result from their different (floral versus faunal) sources, are more pronounced between transitions Ia and Ib. This may reflect different habitats under the unusual sea surface conditions of the deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present Pleistocene oxygen and carbon isotope records from two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) from Ocean Drilling Program Site 847 (0°16'N, 95°19'W; 3334 m water depth). An average sample resolution of 4500 yr was obtained by sampling at an interval of 15 cm through a continuous 35-m section from 0 to 1.15 Ma. Our d18O-based chronology is similar to that derived independently by astronomically tuning the gamma-ray attenuation porosity evaluator (GRAPE) record (Shackleton et al., 1995), though offsets as large as ± 30 k.y. occur on occasion. The surface waters at eastern equatorial Pacific Site 847, 380 km west of the Galapagos, are characterized by strong and constant upwelling, elevated nutrient concentrations, and high productivity. The isotopic composition of G. sacculifer (300-355 µm) reflects conditions in the thin-surface mixed layer, and the composition of N. dutertrei (355-425 µm) monitors the subsurface waters of the permanent shallow (10-40 m) thermocline. The Pleistocene d18O difference (N. dutertrei minus G. sacculifer, Dd18Od-s) averages 0.9 per mil and ranges from 0 per mil to 1.7 per mil. Neglecting species effects and shell size, the average Pleistocene d13C difference (G. sacculifer minus N. dutertrei, Dd13Cs-d) is 0.0 per mil and ranges from -0.5 per mil to 0.5 per mil. The Dd18Od-s and Dd13Cs-d records are used to infer vertical contrasts in upper ocean water temperature and nutrient concentration, though d13C may also be influenced by other factors, such as CO2 gas exchange. Variations in the isotopic differences are often synchronous with glacial/interglacial climate change. Glacial periods are characterized by smaller vertical contrasts in both temperature and nutrient concentration, and by notably greater accumulation rates of N. dutertrei and CaCO3. We attribute these responses to greater upwelling at the equatorial divergence. Superimposed on the glacial/interglacial Dd18Od-s pattern is a long-term trend possibly associated with the advection of Peru Current waters. The temporal fluctuations in the isotopic contrasts are strikingly similar to those observed at Site 851 (Ravelo and Shackleton, this volume), suggesting that the inferred changes in thermal and chemical profiles occurred over a broad region in the equatorial Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the seminal work by Hays et al. (1976), a plethora of studies has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. The Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka, provides an opportunity to pursue this question and test the hypothesis that the long-term processes set up the boundary conditions within which the short-term processes operate. Similarly to the current interglacial, MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation. Here we examine the record of climatic conditions during MIS 19 using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to assess the stability and duration of this interglacial, and evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Benthic and planktonic foraminiferal d18O values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal. The glacial inception occurred at ~779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. After having combined the new results with previous data from the same site, and using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the Early-Middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ~11 kyr and, additionally, at ~5.8 and ~3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope data from planktonic and benthic foraminifera, on a high-resolution age model (44 14C dates spanning 17,400 years), document deglacial environmental change on the southeast Alaska margin (59°33.32'N, 144°9.21'W, 682 m water depth). Surface freshening (i.e., d18O reduction of 0.8 per mil) began at 16,650 ± 170 cal years B.P. during an interval of ice proximal sedimentation, likely due to freshwater input from melting glaciers. A sharp transition to laminated hemipelagic sediments constrains retreat of regional outlet glaciers onto land circa 14,790 ± 380 cal years B.P. Abrupt warming and/or freshening of the surface ocean (i.e., additional d18O reduction of 0.9 per mil) coincides with the Bølling Interstade of northern Europe and Greenland. Cooling and/or higher salinities returned during the Allerød interval, coincident with the Antarctic Cold Reversal, and continue until 11,740 ± 200 cal years B.P., when onset of warming coincides with the end of the Younger Dryas. An abrupt 1 per mil reduction in benthic d18O at 14,250 ± 290 cal years B.P. likely reflects a decrease in bottom water salinity driven by deep mixing of glacial meltwater, a regional megaflood event, or brine formation associated with sea ice. Two laminated opal-rich intervals record discrete episodes of high productivity during the last deglaciation. These events, precisely dated here at 14,790 ± 380 to 12,990 ± 190 cal years B.P. and 11,160 ± 130 to 10,750 ± 220 cal years B.P., likely correlate to similar features observed elsewhere on the margins of the North Pacific and are coeval with episodes of rapid sea level rise. Remobilization of iron from newly inundated continental shelves may have helped to fuel these episodes of elevated primary productivity and sedimentary anoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies of benthic foraminiferal isotopic composition have demonstrated that a latest Eocene-earliest Oligocene benthic foraminiferal d18O increase occurred in the Pacific, Southern and Atlantic Oceans (Douglas and Savin, 1973, doi:10.2973/dsdp.proc.17.120.1973; Savin et al., 1977, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Kennett and Shackleton, 1976, doi:10.1038/260513a0; Savin, 1977, doi:10.1146/annurev.ea.05.050177.001535; Keigwin, 1980, doi:10.1038/287722a0; Boersma and Shackleton, 1979, doi:10.2973/dsdp.proc.39.139.1977; Miller and Curry, 1982, doi:10.1038/296347a0; Miller et al., 1985, doi:10.2973/dsdp.proc.80.113.1985). A Middle Miocene d18O increase has been noted in the Pacific, Southern and South Atlantic Oceans (Douglas and Savin, 1973, doi:10.2973/dsdp.proc.17.120.1973; Savin et al., 1975, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Boersma and Shackleton, 1979, doi:10.2973/dsdp.proc.39.139.1977; Woodruff et al., 1981, doi:10.1126/science.212.4495.665; Savin et al., 1981, doi:10.1016/0377-8398(81)90031-1; and tentatively identified in the North Atlantic (Blanc et al., 1980, doi:10.1038/283553a0; Blanc and Duplessy, 1982, doi:10.1016/0198-0149(82)90033-4). Due to the incomplete nature of the North Atlantic stratigraphical record, however, the Oligocene to Middle Miocene isotopic record (Moore et al., 1978, Miller and Tucholke, 1983) of this ocean is poorly understood. In the modern ocean, the North Atlantic and its marginal seas has a critical role in abyssal circulation, influencing deep- and bottom-water hydrography as far away as the North Pacific (Reid and Lynn, 1971, doi:10.1016/0011-7471(71)90094-5; Worthington, 1976; Reid, 1971, doi:10.1016/0198-0149(79)90064-5). We now report oxygen isotope measurements on Oligocene to Middle Miocene (12-36 Myr BP) benthic foraminifera in the western North Atlantic which show two periods of enriched 18O values: early Oligocene and early Middle Miocene. These enriched intervals are interpreted as resulting, in part, from the build-up of continental ice sheets. The Oligocene to Middle Miocene d13C record shows three cycles of enrichment and depletion of large enough magnitude to be useful for time-Stratigraphical correlations. Within the biostratigraphical age resolution, d18O and d13C records correlate with records from other oceans, helping to establish a useful Tertiary isotopic stratigraphy. An Atlantic-Pacific d13C contrast of 0.3-0.9 per mil during the latest Oligocene to Middle Miocene (12-26 Myr BP) indicates North Atlantic deep and bottom-water production analogous to modern North Atlantic deep water (NADW).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotopic compositions of the tests of planktonic foraminifera from several Deep Sea Drilling Project sites provide a general picture of low-latitude marine temperatures from Maastrichtian time to the present. Bottom temperatures determined from the isotopic compositions of benthonic foraminifera are interpreted as being indicative of high-latitude surface temperatures. Prior to the beginning of middle Miocene time, high- and low-latitude temperatures changed in parallel fashion. Following an apparently small and short-lived drop in temperature near the Tertiary-Cretaceous boundary, temperatures remained warm and relatively constant through Paleocene and early and middle Eocene time; bottom temperatures then were on the order of 12°C. A sharp temperature drop in late Eocene time was followed by a more gradual lowering of temperature, culminating in a late Oligocene high-latitude temperature minimum of about 4°C. A temperature rise through early Miocene time was followed in middle Miocene time by a sudden divergence of high- and low-latitude temperatures: high-latitude temperatures dropped dramatically, perhaps corresponding to the onset of major glaciation in Antarctica, but low-latitude temperatures remained constant or perhaps increased. This uncoupling of high-and low-latitude temperatures is postulated to be related to the establishment of a circum-Antarctic circulation similar to that of today. A further drop in high-latitude temperatures in late Pliocene time probably signaled the onset of a major increase in polar glaciation, including extensive sea-ice formation. Early Miocene, small-amplitude (1 per mil) sympathetic fluctuations in isotopic compositions of planktonic and benthonic foraminifera have been identified. These have a period of several hundred thousand years. Superimposed upon these are much more rapid and smaller fluctuations (0.2 to 0.5 per mil) with a period of about 80000 to 90000 yr. This is similar to the period observed for Pleistocene isotopic temperature fluctuations. In low latitudes, much smaller vertical temperature gradients seem to have existed during Maastrichtian and Paleogene time than exist at present. The absence of a sharply defined thermocline during early Tertiary time is also suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.