155 resultados para proxy data
Resumo:
Changes in the strength of Atlantic meridional overturning circulation (AMOC) are known to have profound impacts on global climate. Coupled modelling studies have suggested that, on annual to multi-decadal time scales, a slowdown of AMOC causes a deepening of the thermocline in the tropical Atlantic. However, this process has been poorly constrained by sedimentary geochemical records. Here, we reconstruct surface (UK'37 Index) and thermocline (TEXH86) water temperatures from the Guinea Plateau Margin (Eastern tropical Atlantic) over the last two glacial-interglacial cycles (~ 192 kyr). These paleotemperature records show that periods of reduced AMOC, as indicated by the d13 C benthic foraminiferal record from the same core, coincide with a reduction in the near-surface vertical temperature gradient, demonstrating for the first time that AMOC-induced tropical Atlantic thermocline adjustment exists on longer, millennial time scales. Modelling results support the interpretation of the geochemical records and show that thermocline adjustment is particularly pronounced in the eastern tropical Atlantic. Thus, variations in AMOC strength appear to be an important driver of the thermocline structure in the tropical Atlantic from annual to multi-millennial time scales.
Resumo:
[1] Previous studies have demonstrated the potential for the Li content of coral aragonite to record information about environmental conditions, but no detailed study of tropical corals exists. Here we present the Li and Mg to Ca ratios at a bimonthly to monthly resolution over 25 years in two modern Porites corals, the genus most often used for paleoclimate reconstructions in the tropical Indo-Pacific. A strong relationship exists between coral Li/Ca and locally measured SST, indicating that coral Li/Ca can be used to reconstruct tropical SST variations. However, Li/Ca ratios of the skeleton deposited during 1979-1980 do not track local SST well and are anomalously high in places. The Mg/Ca ratios of this interval are also anomalously high, and we suggest Li/Ca can be used to reconstruct tropical SST only when Mg/Ca data are used to carefully screen for relatively rare biological effects. Mg/Li or Li/Mg ratios provide little advantage over Li/Ca ratios, except that the slope of the Li/Mg temperature relationship is more similar between the two corals. The Mg/Li temperature relationship for the coral that experienced a large temperature range is similar to that found for cold water corals and aragonitic benthic foraminifera in previous studies. The comparison with data from other biogenic aragonites suggests the relationship between Li/Mg and water temperature can be described by a single exponential relationship. Despite this hint at an overarching control, it is clear that biological processes strongly influence coral Li/Ca, and more calibration work is required before widely applying the proxy.
Resumo:
The mass accumulation rates (MARs) of aeolian dust in the ocean basins provide an important record of climate in the continental source regions of atmospheric dust and of the prevailing wind patterns responsible for dust transport in the geologic past. The incorporation of other terrigenous components such as volcanic ashes in seafloor sediments, however, often obscures the aeolian dust record. We describe a new approach which uses the delivery rate of crustal 4He to seafloor sediments as a proxy for the mass accumulation rate of old continental dust which is unaffected by the addition of other terrigenous components. We have determined the flux of crustal 4He delivered to the seafloor of the Ontong Java Plateau (OJP) in the western equatorial Pacific over the last 1.9 Myrs. Crustal 4He fluxes vary between 7.7 and 30 ncc/cm**2/kyr and show excellent correlation with global climate as recorded by oxygen isotopes, with high crustal 4He fluxes associated with glacial periods over the entire interval studied. Furthermore, the onset of strong 100 kyr glacial-interglacial climate cycling is clearly seen in the 4He flux record about 700 kyrs ago. These data record variations in the supply of Asian dust in response to climate driven changes in the aridity of the Asian dust sources, consistent with earlier work on Asian dust flux to the northern Pacific Ocean. However, in contrast to previous studies of sites in the central and eastern equatorial Pacific Ocean, there is no evidence that the Inter Tropical Convergence Zone (an effective rainfall barrier to the southward transport of northern hemisphere dust across the equator in the central and eastern Pacific) has influenced the delivery of Asian dust to the OJP. The most likely carrier phase for crustal helium in these sediments is zircon, which can reasonably account for all the 4He observed in the samples. As a first order estimate, these results suggest that the mass accumulation rate of Asian dust on the OJP over the last 1.9 Myrs varied from about 4 to 15 mg/ cm**2/kyr. In contrast, previous studies show that over the same interval the total MAR of terrigenous dust (i.e. Asian dust plus local volcanics) on OJP varied between about 34 and 90 mg/ cm**2/kyr.
Resumo:
There is generally a lack of knowledge on how marine organic carbon accumulation is linked to vertical export and primary productivity patterns. In this study, a multi-proxy geochemical and organic-sedimentological approach is coupled with organic facies modelling focusing on regional calculations of carbon cycling and carbon burial on the western Barents Shelf between northern Scandinavia and Svalbard. OF-Mod 3D, an organic facies modelling software tool, is used to reconstruct the marine and terrestrial organic carbon fractions and to make inferences about marine primary productivity in this region. The model is calibrated with an extensive sample dataset and reproduces the present-day regional distribution of the organic carbon fractions well. Based on this new organic facies model, we present regional carbon mass accumulation rate calculations for the western Barents Sea. The calibration dataset includes location and water depth, sand fraction, organic carbon and nitrogen data and calculated marine and terrestrial organic carbon fractions.