156 resultados para cumulative peak area


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk mineralogy of the terrigenous fraction of 99 samples from ODP Site 722 on the Owen Ridge, western Arabian Sea, has been determined by x-ray diffraction, using an internal standard method. The sampling interval, approximately 4.3 k.y., provides a detailed mineralogic record for the past 500 k.y. Previous studies have identified important modern continental sediment sources and the mineral assemblages presently derived from each. These studies have also demonstrated that most of this material is supplied by southwest and northwest winds during the summer monsoon. A variety of marine and terrestrial records and general circulation model (GCM) simulations have indicated the importance of monsoonal circulation during the Pleistocene and Holocene and have demonstrated increased aridity during glacial times and increased humidity during inter glacials. The mineralogic data generated here were used to investigate variations in source area weathering conditions during these environmental changes. Terrigenous minerals present include smectite, illite, palygorskite, kaolinite, chlorite, quartz, plagioclase feldspar, and dolomite. This mineralogy is consistent with the compositions of source areas presently supplying sediment to the Arabian Sea. An R-mode factor analysis has identified four mineral assemblages present throughout the past 500 k.y.: quartz/chlorite/dolomite (Factor 1), kaolinite/plagioclase/illite (Factor 2), smectite (Factor 3), and palygorskite/dolomite (Factor 4). Chlorite, illite, and palygorskite are extremely susceptible to chemical weathering, and a spectral comparison of these factors with the eolian mass accumulation rate (MAR) record from Hole 722B (an index of dust source area aridity) indicates that Factors 1, 2, and 4 are directly related to changes in aridity. Because of these characteristics, Factors 1,2, and 4 are interpreted to originate from arid source regions. Factor 3 is interpreted to record more humid source conditions. Time-series of scores for the four factors are dominated by short-term (10-100 k.y.) variability, and do not correlate well to glacial/interglacial fluctuations in the time domain. These characteristics suggest that local climatic shifts were complex, and that equilibrium weathering assemblages did not develop immediately after climatic change. Spectral analysis of factor scores identifies peaks at or near the primary Milankovitch frequencies for all factors. Factor 1 (quartz/chlorite/dolomite), Factor 2 (kaolinite/plagioclase/illite), and Factor 4 (illite/palygorskite) are coherent and in phase with the MAR record over the 23, 41, and 100 k.y. bands, respectively. The reasons for coherency at single Milankovitch frequencies are not known, but may include differences in the susceptibilities of minerals to varying time scales of weathering and/or preferential development of suitable continental source environments by climatic changes at the various Milankovitch frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drill core recovered at Ocean Drilling Program Site 808 (Leg 131) proves that the wedge of trench sediment within the central region of the Nankai Trough comprises approximately 600 m of hemipelagic mud, sandy turbidites, and silty turbidites. The stratigraphic succession thickens and coarsens upward, with hemipelagic muds and volcanic-ash layers of the Shikoku Basin overlain by silty and sandy trench-wedge deposits. Past investigations of clay mineralogy and sand petrography within this region have led to the hypothesis that most of the detritus in the Nankai Trough was derived from the Izu-Honshu collision zone and transported southwestward via axial turbidity currents. Shipboard analyses of paleocurrent indicators, on the other hand, show that most of the ripple cross-laminae within silty turbidites of the outer marginal trench-wedge facies are inclined to the north and northwest; thus, many of the turbidity currents reflected off the seaward slope of the trench rather than moving straight down the trench axis. Shore-based analyses of detrital clay minerals demonstrate that the hemipelagic muds and matrix materials within sandy and silty turbidites are all enriched in illite; chlorite is the second-most abundant clay mineral, followed by smectite. In general, the relative mineral percentages change relatively little as a function of depth, and the hemipelagic clay-mineral population is virtually identical to the turbidite-matrix population. Comparisons between different size fractions (<2 µm and 2-6 µm) show modest amounts of mineral partitioning, with chlorite content increasing in the coarser fraction and smectite increasing in the finer fraction. Values of illite crystallinity index are consistent with conditions of advanced anchimetamorphism and epimetamorphism within the source region. Of the three mica polytypes detected, the 2M1 variety dominates over the 1M and 1Md polytypes; these data are consistent with values of illite crystallinity. Measurements of mica bo lattice spacing show that the detrital illite particles were eroded from a zone of intermediate-pressure metamorphism. Collectively, these data provide an excellent match with the lithologic and metamorphic character of the Izu-Honshu collision zone. Data from Leg 131, therefore, confirm the earlier interpretations of detrital provenance. The regional pattern of sediment dispersal is dominated by a combination of southwest-directed axial turbidity currents, radial expansion of the axial flows, oblique movement of suspended clouds onto and beyond the seaward slope of the Nankai Trough, and flow reflection back toward the trench axis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (<= 100 m) and deep (> 100 m) populations of archaea; ii) stratification of unsaturated GDGTs with varying redox conditions; and iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We thus provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. This article is protected by copyright. All rights reserved.