990 resultados para 11191756 Piston core 8
Resumo:
A multiproxy record has been acquired from a piston core (SO139-74KL) taken offshore southern Sumatra, an area which is situated in the southwestern sector of the tropical Indo-Pacific Warm Pool. The high-resolution data sets (X-ray fluorescence, total organic carbon, and C37 alkenones) were used to track changes in paleoproductivity, freshwater budget, and sea surface temperature (SST) of the tropical climate system at orbital time scales over the past 300 ka. Our paleoclimatic data show that enhanced marine paleoproductivity was directly related to strengthening of coastal upwelling during periods of increased boreal summer insolation and associated SE monsoon strength with a precessional cyclicity. Changes in freshwater supply were primarily forced by precession-controlled changes in boreal NW winter monsoon rainfall enclosing an additional sea level component. SST variations of 2°-5°C occurred at eccentricity and precessional cyclicity. We suggest that the sea surface temperature variability off southern Sumatra is predominantly related to three major causes: (1) variations in upwelling intensity; (2) an elevated freshwater input into the southern Makassar Strait leading to reduced supply of warmer surface waters from the western Pacific and increased subsurface water transport via the Indonesian Throughflow into the Indian Ocean; and (3) long-term changes in the intensity or frequency of low-latitude climate phenomena, such as El Niño-Southern Oscillation.
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
We present high-resolution records of sedimentary nitrogen (d15Nbulk) and carbon isotope ratios (d13Cbulk) from piston core SO201-2-85KL located in the western Bering Sea. The records reflect changes in surface nitrate utilization and terrestrial organic matter contribution in submillennial resolution that span the last 180 kyr. The d15Nbulk record is characterized by a minimum during the penultimate interglacial indicating low nitrate utilization (~62-80%) despite the relatively high export production inferred from opal concentrations along with a significant reduction in the terrestrial organic matter fraction (mterr). This suggests that the consumption of the nitrate pool at our site was incomplete and even more reduced than today (~84%). d15Nbulk increases from Marine Isotope Stage (MIS) 5.4 and culminates during the Last Glacial Maximum, which indicates that nitrate utilization in the Bering Sea was raised during cold intervals (MIS 5.4, 5.2, 4) and almost complete during MIS 3 and 2 (~93-100%). This is in agreement with previous hypotheses suggesting that stronger glacial stratification reduced the nutrient supply from the subeuphotic zone, thereby increasing the iron-to-nutrient ratio and therefore the nitrate utilization in the mixed surface layer. Large variations in d15Nbulk were also recorded from 180 to 130 ka BP (MIS 6), indicating a potential link to insolation and sea-level forcing and its related feedbacks. Millennial-scale oscillations were observed in d15Nbulk and d13Cbulk that might be related to Greenland interstadials.
Resumo:
The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are subchondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), -4.70 < epsilon-Hf < +16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, epsilon-Hf= =0.78 epsilon-Nd = +5.66 (n =22, R**2 =0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in epsilon-Hf of Asian dust exceeds that predicted on the basis of corresponding epsilon-Nd values (34.76 epsilon-Hf < +2.5; -10.96< epsilon-Nd <-10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (epsilon-Hf =+8.6 and +10.3, epsilon-Nd =39.5 and 39.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.
Resumo:
High-resolution records of coarse lithic content and oxygen isotope have been obtained in a piston core from the Irminger Basin. The last glacial period is characterized by numerous periods of increased iceberg discharges originating partly from Iceland and corresponding to millennial-scale instabilities of the coastal ice sheets and ice shelves in the Nordic area. A comparison with midlatitude sediment cores shows that ice-rafted material corresponding to the Heinrich events was deposited synchronously from 40° to 60°N. There are thus two oscillating systems: every 5-10 kyr massive iceberg armadas are released from large continental ice caps, whereas more frequent instabilities of the coastal ice sheets in the high latitude regions occur every 1.2-3.8 kyr. At the time of the Heinrich events the synchroneity of the response from all the northern hemisphere ice sheets attests the existence of strong interactions between the two systems.
Resumo:
A high-resolution piston core, ENAM93-21, from a water depth of 1020 m near the Faeroe-Shetland Channel is investigated for variations in magnetic susceptibility, surface oxygen isotopes, grain size distribution, content of ice-rafted detritus (IRD), and distribution of planktonic and benthic foraminifera. The core, covering the last 58,000 years, is correlated with the Greenland ice cores and compared with paleorecords from the Norwegian Sea and the North Atlantic Ocean. All fifteen Dansgaard-Oeschger climatic cycles recognized from the investigated time period in the Greenland ice cores have been identified in the ENAM93-21 core. Each cycle is subdivided into three intervals on the basis of characteristic benthic and planktonic faunas. Interstadial intervals contain a relatively warm planktonic fauna and a benthic fauna similar to the modern fauna in the Norwegian Sea. This indicates thermohaline convection as at present, with a significant contribution of deep water to the North Atlantic Deep Water (NADW). Transitional cooling intervals are characterized by more cold water planktonic foraminfera and ice-related benthic species. The benthic fauna signifies restricted bottom water conditions and a reduced contribution to the NADW. The peak abundance of N. pachyderma (s.) and the coldest surface water conditions are found in the stadial intervals. The benthic fauna is dominated by species with an association to Atlantic Intermediate Water, suggesting an increased Atlantic influence in the Norwegian Sea, and there was probably no contribution to the NADW through the Faeroe-Shetland Channel. The three different modes of circulation can be correlated to paleoceanographic events in the Norwegian Sea and the North Atlantic Ocean.
Resumo:
Benthic and selected planktic foraminifera and stable isotope records were determined in a piston core from the Gulf of Aden, NW Arabian Sea that spans the last 530 ka. The benthic foraminifera were grouped into four principal assemblages using Q-mode Principal Component Analyses. Comparison of each of these assemblages with the fauna of the nearby regions enabled us to identify their specific environmental requirements as a function of variability in food supply and strength of the oxygen minimum zone and by that to use them as indicators of surface water productivity. The benthic foraminiferal productivity indicators coupled with the record of Globigerina bulloides, a planktic foraminifer known to be sensitive to productivity changes in the region, all indicate higher productivity during glacial intervals and productivity similar to present or even reduced during interglacial stages. This trend is opposite to the productivity pattern related to the SW summer monsoon of the Arabian Sea and indicates the role of the NE winter monsoon on the productivity of the Gulf of Aden. A period of exceptionally enhanced productivity is recognized in the Gulf of Aden region between ~60 and 13 kyr indicating the intensification of the NE winter monsoon to its maximal activity. Contemporaneous indication of increased productivity in other parts of the Arabian Sea, unexplained so far by the SW summer monsoon variability, might be related to the intensification of the NE winter monsoon. Another prominent event of high productivity, second in its extent to the last glacial productivity event is recognized between 430 and 460 kyr. These two events seem to correspond to periods of similar orbital positioning of rather low precession (and eccentricity) amplitude for a relatively long period. Glacial boundary conditions seem to control to a large extent the NE winter monsoon variability as also indicated by the dominance of the 100 ka cycle in the investigated time series. Secondary in their importance are the 23 and 41 ka cycles which seem also to contribute to the NE monsoonal variability. Following the identification of productivity events related to the NE winter monsoon in the Gulf of Aden, it is possible now to extend this observation to other parts of the Arabian Sea and consider the contribution of this monsoonal system to the productivity fluctuations preserved in the sedimentary records.
Resumo:
Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. (1990) from ODP site 677 in the equatorial Pacific differs significantly from previous ones (e.g. Kominz and Pisias, 1979 doi:10.1126/science.204.4389.171; Morley and Hays, 1981 doi:10.1016/0012-821X(81)90034-0, Imbrie et al. 1984), yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values (Mankinen and Dalrymple, 1979 doi:10.1029/JB084iB02p00615; Berggren et al., 1985; Harland and Armstrong, 1989) but are in good agreement with recent Ar/Ar dating (Baksi et al., 1991; 1992 doi:10.1126/science.256.5055.356; Spell and McDougall, 1992 doi:10.1029/92GL01125). These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in delta18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal (Rostek et al., 1993 doi:10.1038/364319a0). Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the SPECMAP composite curves (Imbrie et al., 1984; Prell et al., 1986 doi:10.1029/PA001i002p00137), and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. (1990). The precession peaks found in the delta18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our delta18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 +/- 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. (1990) and recent radiochronological Ar/Ar datings on lavas (Baksi et al., 1991; 1992; Spell and McDougall, 1992). We developed a new low-latitude, Upper Pleistocene delta18O reference record by stacking and tuning the delta18O records from core MD900963 and site 677 to orbital forcing functions.
Resumo:
The CaCO3-contents and the fractions > 40 µm have been analysed from 5 kastenloten, one piston core and two kastengreifer taken between Senegal and Cape Verde Islands. Numerous benthonic and planktonic organisms and different terrigenous components have been distinguished. The four cores off Senegal reach middle Wuerm sediments; cores GIK12329-6 and TAG72-1 reach the V-zone and core GIK12331-4 the X-zone (Eem); the two kastengreifer contain sediments of Holocene age. Correlation of the cores has been made. Holocene sedimentation rates decrease from the shallow cores (6-11 cm/1000 years) to the deep-sea (1-2 cm/1000 years). The following climatic variations could be deduced from the sediments off the Senegal: during Holocene climate was in general as today, the Senegal river transporting fine grained material to the sea. The upper Wuerm was arid with no river influence but with red dune sand transported to the continental slope. During middle Wuerm the climate was humid again. The deep-sea cores have been influenced by eolian material from arid regions during glacial and interglacial periods, indicated by relatively high "Wuestenquarz-numbers". However, during Wuerm "Wuestenquarz-numbers" are higher than during Holocene and Eem, indicating that more intensely red coloured sediment was exposed to wind activity on the continent during this period. Varying amounts of terrigenous material and CaCO3-contents indicate varying wind strengths (lower in Holocene and Eem than during Wuerm). The boundary between humid and arid Wuerm climate was at approximately 20 °N. Influence of upwelling is difficult to establish in the sediments off Senegal, because river influence, while increasing fertility also dilutes the diatoms which are typical for upwelling. High amounts of organic carbon, low plankton/benthos ratios of foraminifers and low plankton foraminifer/radiolarian ratios in Holocene sections might be interpreted as influenced by upwelling. Turbidites occur in cores 72 and 31 and at the Holocene/Pleistocene boundary of core GIK12329-6. Their composition indicates provenance from the continental shelf of the Cape Verde Islands for core 31 and the continental shelf and slope off Senegal for core TAG72-1. Volcanic material, rare in the normal pelagic sediment of core GIK12331-4 is more frequent in the turbidites.
Resumo:
We examined the relative abundance of various components in the coarse fraction (> 150 µm) from a selected portion of the DSDP Site 480 piston core. The components consist mainly of diatoms, radiolarians, benthic and planktonic foraminifers with minor amounts of sponge spicules, terrigenous material, volcanic glass(?), dehydrated gypsum crystals, and spines of unknown biological origin. The examination shows that the siliceous organisms abound in the laminated sediments and that the calcareous organisms are more abundant in the nonlaminated sediments. Seasonal upwelling is responsible for the deposition of laminated sediments. The upwelling creates a strong oxygen-minimum zone, restricting the occurrence of burrowing benthic organisms and benthic foraminifers.
Resumo:
During the International Indian Ocean Expedition (1964/65) sediment cores were taken on six profiles off the western coast of the Indian Subcontinent. These profiles run approximately perpendicular to the coast, from the deep-sea over the continental slope to the continental shelf. Additional samples and cores were taken in a dense pattern in front of the delta of the Indus River. This pattern of sampling covered not only marine sediments, but also river and beach sediments in Pakistan. The marine samples were obtained with piston, gravity and box corers and by a Van Veen grab sampler. The longest piston core is about 5 meters long. 1. Distribution of the elements on the sediment surface The area of maximal carbonate values (aprox. 80-100% CaCO3) essentially coincides with the continental shelf. The highest Sr values were observed largely within this area, but only in the vicinity of the Gulf of Cambay. Mainly the aragonitic coprolites are responsible for those high Sr contents. The Mg contents of the carbonates are comparatively low; surprisingly enough the highest Mg concentrations were also measured in the coprolites. The maximum contents of organic matter (Core) were found along the upper part of the continental slope. They coincide with the highest porosity and water content of the sediments. Frequently the decomposition of organic matter by oxydation is responsible for the measured Corg contents. On the other side the quantity of originally deposited organic material is less important in most cases. The enrichment of the "bauxitophile" elements Fe, Ti, Cr and V in the carbonate- and quartz-free portions of the sediments is essentially due to the influence of coarse terrigenous detritus. For the elements Mn, Ni and Cu (in per cent of the carbonateand quartz-free sediment) a strong enrichment was observed in the deep-sea realm. The strong increase in Mn toward the deep-sea is explained by authigenesis of Mn-Fe-concretions. Mn-nodules form only under oxydizing conditions which obviously are possible only at very low rates of deposition. The Mg, B and, probably also Mn contents in the clay minerals increase with increasing distance from the continent. This can be explained by the higher adsorption of those elements from sea water because of increasing duration of the clay mineral transport. The comparison of median contents of some elements in our deep-sea samples with deep-sea sediments described by TUREKIAN & WEDEPOHL (1961) shows that clear differences in concentration exist only in the case of "bauxitophile" elements Cr and Be. The Cr and Be contents show a clear increase in the Indian Ocean deep-sea samples compared to those described by TUREKIAn & WEDEPOHL (1961) which can obviously be attributed to the enrichment in the lateritic and bauxitic parent rocks. The different behaviour of the elements Fe, Ti and Mn during decomposition of the source rocks, transport to the sea and during oxydizing and reducing conditions in the marine environment can be illustrated by Ti02/Fe and MnO/Fe ratios. The different compositions of the sediments off the Indus Delta and those of the remaining part of the area investigated are characterized by a different distribution of the elements Mn and Ti. 2. Chemical inhomogenities in the sediments Most longer cores show 3 intervals defined by chemical and sedimentological differences. The top-most interval is coarse-grained, the intermedial interval is fine grained and the lower one again somewhat coarser. At the same time it is possible to observe differences from interval to interval in the organogenic and detrital constituents. During the formation of the middle interval different conditions of sedimentation from those active during the previous and subsequent periods have obviously prevailed. Looking more closely at the organogenic constituents it is remarkable that during the formation of the finer interval conditions of a more intensive oxydation have prevailed that was the case before and after: Core decreases, whereas P shows a relative increase. This may be explained by slower sedimentation rate or by a vertical migration of the oxygen rich zone of the sea-water. The modifications of the elements from minerals in detrital portion of the sediments support an explanation ascribing this fact to modifications of the conditions of denudation and transportation which can come about through a climatic change or through tectonic causes. The paleontological investigations have shown (ZOBEL, in press) that in some of the cores the middle stratum of fine sedimentation represents optimal conditions for organic life. This fact suggests also oxydizing conditions during the sedimentation of this interval. In addition to the depositional stratification an oxydation zone characterized by Mn-enrichment can be recognized. The thickness of the oxidation zone decreases towards the coast and thins out along the middle part of the continental slope. At those places, where the oxydation zone is extremely thin, enrichment of Mn has its maximum. This phenomenon can probably be attributed to the migration of Mn taking place in its dissociated form within the sediment under reducing conditions. On the other side this Mn-migration in the sediment does not take place in the deep-sea, where oxydizing conditions prevail. 3. Interstitial waters in the sediments Already at very small core depths, the interstitial waters have undergone a distinct modification compared with the overlying sea water. This distinct modification applies both to total salinity and to the individual ions. As to the beginning of diagenesis the following conclusions can be drawn: a) A strong K-increase occurs already at an early stage. It may be attributable to a diffusion barrier or to an exchange of Mg-ions on the clays. Part of this increase may also originate from the decomposition of K-containing silicates (mica and feldspars). A K-decrease owing to the formation of illite (WEAVER 1967), however, occurs only at much greater sediment depth. b) Because of an organic protective coating, the dissolution of carbonate is delayed in recent organogenic carbonates. At the same time some Ca is probably being adsorbed on clay minerals. Consequently the Ca-content of the interstitial water drops below the Ca-content of the sea water. c) Already at an early stage the Mg adsorption on the clays is completed. The adsorbed Mg is later available for diagenetic mineral formations and transformations.
Resumo:
Seismic reflection studies in the maar lake Laguna Potrok Aike (51°58? S, 70°23? W) revealed an erosional unconformity associated with a sub-aquatic lake-level terrace at a water depth of 30m. Radiocarbon-dated, multi-proxy sediment studies of a piston core from this location indicate that the sediment below this discontinuity has an age of 45kyr BP (Oxygen Isotope Stage 3), and was deposited during an interval of high lake level. In comparison to the Holocene section, geochemical indicators of this older part of the record either point towards a different sediment source or to a different transport mechanism for Oxygen Isotope Stage 3 sediments. Holocene sedimentation started again before 6790cal. yr BP, providing a sediment record of hydrological variability until the present. Geochemical and isotopic data indicate a fluctuating lake level until 5310cal. yr BP. During the late Holocene the lake level shows a receding tendency. Nevertheless, the lake level did not drop below the 30m terrace to create another unconformity. The geochemical characterization of volcanic ashes reveals evidence for previously unknown explosive activity of the Reclús and Mt. Burney volcanoes during Oxygen Isotope Stage 3.
Resumo:
The record of planktonic foraminifer abundances at Site 662 during the late Pliocene (~1.7-2.1 Ma) was examined to determine variations in estimated sea-surface temperature (SST). We compared the results to SST estimates from a late Pleistocene record (~1.5-200 ka) from nearby piston core RC24-7. Within the primary orbital band (~20-100 k.y.), the cold-season responses of both equatorial Atlantic records are dominated by the precessional period, and the computed range of variability is quite similar. This is in contrast to the evolution of the dominant climatic response from 41 to 100 k.y. at high northern latitudes between the late Pliocene and the late Pleistocene. The orbital-band SST response in this region of greatest divergence in the equatorial Atlantic has not changed appreciably between the late Pliocene and the late Pleistocene.
Resumo:
Abundant and diversified ebridians recovered during IODP Expedition 302 (ACEX) have been identified and counted in order to establish their taxonomy and to decipher the biostratigraphic potential of ebridians in the central Arctic Ocean. In the ACEX samples these fossils are preserved in Lithologic Units 1/6 and 2, which consist mainly of dark silty clay and biosiliceous ooze, respectively. Thirty taxa have been distinguished, three of which are described as new species (Ammmodochium lomonosovense, Pseudammodochium karyon, and pseudammodochium psichion). The most dominant ebridian species is Pseudammodochium dictyoides throughout the biosiliceous section. The second dominant species varies alternately throughout the section. Based on the characteristic occurrences of major ebridian taxa, the ebridian assemblageswere divided into GroupsAtoDin stratigraphic order. The ebridian assemblages in piston core USGS Fl-422 from the Alpha Ridge probably correlate to our assemblage Group A of early middle Eocene age, although rare younger taxa are irregularly included.
Resumo:
Late Pliocene to Recent sediments from the southern Brazil Basin (DSDP Hole 515A, hydraulic piston core) were analyzed for evidence of episodic flow of Antarctic Bottom Water (AABW) through the Vema Channel. Carbonate-enriched layers punctuate the post-Pliocene section, otherwise composed predominantly of terrigenous silt and clay. Carbonate enrichment is thought to result from rapid deposition of fine-grained calcareous turbidites, originating in canyons incised on the northern margin of the Rio Grande Rise. The composition of benthic foraminiferal assemblages and the presence of stratigraphically displaced discoasters is consistent with a turbidite origin. Based on the presence of displaced Antarctic diatoms, AABW flow through the Vema Channel apparently has had a major influence on this site for only four periods during the last 2.7 Ma (about 45 to 250; 375 to 430; 700 to 780; 1320 to 1345 thousand yr. ago).